Quantum calculus with respect to another function

被引:3
|
作者
Kamsrisuk, Nattapong [1 ]
Passary, Donny [1 ]
Ntouyas, Sotiris K. [2 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 04期
关键词
quantum calculus; quantum derivative; quantum integral; Hermite-Hadamard inequality; boundary value problem; existence; uniqueness; fixed point theorem; FRACTIONAL Q-INTEGRALS; EXISTENCE;
D O I
10.3934/math.2024510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we studied the generalizations of quantum calculus on finite intervals. We presented the new definitions of the quantum derivative and quantum integral of a function with respect to another function and studied their basic properties. We gave an application of these newly defined quantum calculi by obtaining a new Hermite -Hadamard inequality for a convex function. Moreover, an impulsive boundary value problem involving quantum derivative, with respect to another function, was studied via the Banach contraction mapping principle.
引用
收藏
页码:10446 / 10461
页数:16
相关论文
共 50 条
  • [41] On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function
    Abbas, Mohamed, I
    Ragusa, Maria Alessandra
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 16
  • [42] Pixel?s Quantum Image Enhancement Using Quantum Calculus
    Yahya, Husam
    Baleanu, Dumitru
    Ibrahim, Rabha W.
    Al-Saidi, Nadia M. G.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 2531 - 2539
  • [43] On New Estimates of q-Hermite-Hadamard Inequalities with Applications in Quantum Calculus
    Chasreechai, Saowaluck
    Ali, Muhammad Aamir
    Ashraf, Muhammad Amir
    Sitthiwirattham, Thanin
    Etemad, Sina
    De la Sen, Manuel
    Rezapour, Shahram
    AXIOMS, 2023, 12 (01)
  • [44] On some new midpoint inequalities for the functions of two variables via quantum calculus
    You, Xuexiao
    Ali, Muhammad Aamir
    Erden, Samet
    Budak, Huseyin
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [45] Hermite-Hadamard integral inequalities on coordinated convex functions in quantum calculus
    Alqudah, Manar A.
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Raees, Muhammad
    Anwar, Matloob
    Hamed, Y. S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [46] The ARA transform in quantum calculus and its applications
    Sinha, Arvind Kumar
    Panda, Srikumar
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2022, 15 (03): : 451 - 464
  • [47] TWO DIMENSIONAL MELLIN TRANSFORM IN QUANTUM CALCULUS
    Brahim, Kamel
    Riahi, Latifa
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (02) : 546 - 560
  • [48] HAHN'S SYMMETRIC QUANTUM VARIATIONAL CALCULUS
    Brito da Cruz, Artur M. C.
    Martins, Natalia
    Torres, Delfim F. M.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2013, 3 (01): : 77 - 94
  • [49] Taylor's formula for general quantum calculus
    Georgiev, Svetlin G.
    Tikare, Sanket
    JOURNAL OF MATHEMATICAL MODELING, 2023, 11 (03): : 491 - 505
  • [50] TWO DIMENSIONAL MELLIN TRANSFORM IN QUANTUM CALCULUS
    Kamel BRAHIM
    Latifa RIAHI
    Acta Mathematica Scientia, 2018, 38 (02) : 546 - 560