Quantum calculus with respect to another function

被引:3
|
作者
Kamsrisuk, Nattapong [1 ]
Passary, Donny [1 ]
Ntouyas, Sotiris K. [2 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 04期
关键词
quantum calculus; quantum derivative; quantum integral; Hermite-Hadamard inequality; boundary value problem; existence; uniqueness; fixed point theorem; FRACTIONAL Q-INTEGRALS; EXISTENCE;
D O I
10.3934/math.2024510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we studied the generalizations of quantum calculus on finite intervals. We presented the new definitions of the quantum derivative and quantum integral of a function with respect to another function and studied their basic properties. We gave an application of these newly defined quantum calculi by obtaining a new Hermite -Hadamard inequality for a convex function. Moreover, an impulsive boundary value problem involving quantum derivative, with respect to another function, was studied via the Banach contraction mapping principle.
引用
收藏
页码:10446 / 10461
页数:16
相关论文
共 50 条
  • [21] Symmetric Difference Operator in Quantum Calculus
    Zhao, Weidong
    Sherine, V. Rexma
    Gerly, T. G.
    Xavier, G. Britto Antony
    Julietraja, K.
    Chellamani, P.
    SYMMETRY-BASEL, 2022, 14 (07):
  • [22] Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function
    Abbas, Mohamed I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10432 - 10447
  • [23] Higher-order infinite horizon variational problems in discrete quantum calculus
    Martins, Natalia
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (07) : 2166 - 2175
  • [24] Hermite-Hadamard type inequalities for interval-valued fractional integrals with respect to another function
    Tunc, Tuba
    MATHEMATICA SLOVACA, 2022, 72 (06) : 1501 - 1512
  • [25] The Hahn Quantum Variational Calculus
    Malinowska, A. B.
    Torres, D. F. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 147 (03) : 419 - 442
  • [26] A general quantum difference calculus
    Hamza, Alaa E.
    Sarhan, Abdel-Shakoor M.
    Shehata, Enas M.
    Aldwoah, Khaled A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [27] A general quantum difference calculus
    Alaa E Hamza
    Abdel-Shakoor M Sarhan
    Enas M Shehata
    Khaled A Aldwoah
    Advances in Difference Equations, 2015
  • [28] The Hahn Quantum Variational Calculus
    A. B. Malinowska
    D. F. M. Torres
    Journal of Optimization Theory and Applications, 2010, 147 : 419 - 442
  • [29] Hybrid System of Proportional Hilfer-Type Fractional Differential Equations and Nonlocal Conditions with Respect to Another Function
    Ntouyas, Sotiris K.
    Wongsantisuk, Phollakrit
    Samadi, Ayub
    Tariboon, Jessada
    MATHEMATICS, 2024, 12 (07)
  • [30] New approach to solutions of a class of singular fractional q-differential problem via quantum calculus
    Liang, Sihua
    Samei, Mohammad Esmael
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)