The connectedness homomorphism between discrete Morse complexes

被引:0
作者
Zheng, Chong [1 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Shinkuju Ku, Tokyo 1698555, Japan
关键词
Discrete Morse theory; Connectedness; Connectedness homomorphism; Birth-death transitions;
D O I
10.1016/j.topol.2024.109022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two discrete Morse functions on a simplicial complex, we introduce the connectedness homomorphism between the corresponding discrete Morse complexes. This concept leads to a novel framework for studying the connectedness in discrete Morse theory at the chain complex level. In particular, we apply it to describe a discrete analogy to 'cusp-degeneration' of Morse complexes. A precise comparison between smooth case and our discrete cases is also given. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:18
相关论文
共 22 条
[1]  
Arnol'd V.I., 1998, Singularity theory, VI
[2]   Discrete Morse theory on graphs [J].
Ayala, R. ;
Fernandez, L. M. ;
Fernandez-Ternero, D. ;
Vilches, J. A. .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) :3091-3100
[3]  
Benedetti B, 2016, ANN SCUOLA NORM-SCI, V16, P335
[4]  
Brueggemann J, 2023, Arxiv, DOI arXiv:2312.14032
[5]   A Simplicial Complex is Uniquely Determined by Its Set of Discrete Morse Functions [J].
Capitelli, Nicolas Ariel ;
Minian, Elias Gabriel .
DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (01) :144-157
[6]  
Cerf Jean., 1970, Publications Mathematiques de lIHES, V39, P5, DOI 10.1007/BF02684687
[7]   Complexes of discrete Morse functions [J].
Chari, MK ;
Joswig, M .
DISCRETE MATHEMATICS, 2005, 302 (1-3) :39-51
[8]  
Donovan C, 2023, NEW YORK J MATH, V29, P1393
[9]   On the homotopy and strong homotopy type of complexes of discrete Morse functions [J].
Donovan, Connor ;
Lin, Maxwell ;
Scoville, Nicholas A. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01) :19-37
[10]   Morse theory for cell complexes [J].
Forman, R .
ADVANCES IN MATHEMATICS, 1998, 134 (01) :90-145