A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential

被引:1
作者
Borot, Gaetan [1 ,2 ]
Wulkenhaar, Raimar [3 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Inst Phys, Humboldt Univ Berlin, Unter Linden 6, D-10099 Berlin, Germany
[3] Univ Munster, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
关键词
BKP hierarchy; matrix models; classical integrability; TOPOLOGICAL RECURSION; EQUATIONS;
D O I
10.3842/SIGMA.2024.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit the Kontsevich matrix model with arbitrary potential as a BKP tau-function with respect to polynomial deformations of the potential. The result can be equivalently formulated in terms of Cartan-Plu<spacing diaeresis>cker relations of certain averages of Schur Q-function. The extension of a Pfaffian integration identity of de Bruijn to singular kernels is instrumental in the derivation of the result.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 21 条
  • [1] Elements of spin Hurwitz theory: closed algebraic formulas, blobbed topological recursion, and a proof of the Giacchetto-Kramer-Lewanski conjecture
    Alexandrov, Alexander
    Shadrin, Sergey
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (02):
  • [2] KdV solves BKP
    Alexandrov, Alexander
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (25)
  • [3] [Anonymous], 1994, Analysis of Numerical Methods
  • [4] Blobbed topological recursion: properties and applications
    Borot, Gaetan
    Shadrin, Sergey
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 162 (01) : 39 - 87
  • [5] Abstract loop equations, topological recursion and new applications
    Borot, Gaetan
    Eynard, Bertrand
    Orantin, Nicolas
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2015, 9 (01) : 51 - 187
  • [6] Blobbed Topological Recursion of the Quartic Kontsevich Model I: Loop Equations and Conjectures
    Branahl, Johannes
    Hock, Alexander
    Wulkenhaar, Raimar
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (03) : 1529 - 1582
  • [7] TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .4. A NEW HIERARCHY OF SOLITON-EQUATIONS OF KP-TYPE
    DATE, E
    JIMBO, M
    KASHIWARA, M
    MIWA, T
    [J]. PHYSICA D, 1982, 4 (03): : 343 - 365
  • [8] de Bruijn NG., 1955, J INDIAN MATH SOC, V19, P133
  • [9] Giacchetto A, 2024, Arxiv, DOI arXiv:2104.05697
  • [10] Grosse H., arXiv