Fractional Brownian motion with fluctuating diffusivities

被引:2
|
作者
Pacheco-Pozo, Adrian [1 ]
Krapf, Diego [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
ANOMALOUS DIFFUSION; SINGLE; KINETICS;
D O I
10.1103/PhysRevE.110.014105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Despite the success of fractional Brownian motion (fBm) in modeling systems that exhibit anomalous diffusion due to temporal correlations, recent experimental and theoretical studies highlight the necessity for a more comprehensive approach of a generalization that incorporates heterogeneities in either the tracers or the environment. This work presents a modification of L & eacute;vy's representation of fBm for the case in which the generalized diffusion coefficient is a stochastic process. We derive analytical expressions for the autocovariance function and both ensemble- and time-averaged mean squared displacements. Further, we validate the efficacy of the developed framework in two-state systems, comparing analytical asymptotic expressions with numerical simulations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Search efficiency of discrete fractional Brownian motion in a random distribution of targets
    Khadem, S. Mohsen J.
    Klapp, Sabine H. L.
    Klages, Rainer
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [32] NMR signals within the generalized Langevin model for fractional Brownian motion
    Lisy, Vladimir
    Tothova, Jana
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 200 - 208
  • [33] Inverse Gaussian and its inverse process as the subordinators of fractional Brownian motion
    Wylomanska, A.
    Kumar, A.
    Poloczanski, R.
    Vellaisamy, P.
    PHYSICAL REVIEW E, 2016, 94 (04)
  • [34] Scaling laws for fractional Brownian motion with power-law clock
    O'Malley, Daniel
    Cushman, John H.
    Johnson, Graham
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [35] Mean-squared-displacement statistical test for fractional Brownian motion
    Sikora, Grzegorz
    Burnecki, Krzysztof
    Wylomanska, Agnieszka
    PHYSICAL REVIEW E, 2017, 95 (03)
  • [36] Riemann-Liouville fractional Brownian motion with random Hurst exponent
    Woszczek, Hubert
    Wylomanska, Agnieszka
    Chechkin, Aleksei
    CHAOS, 2025, 35 (02)
  • [37] Brownian motion with alternately fluctuating diffusivity: Stretched-exponential and power-law relaxation
    Miyaguchi, Tomoshige
    Uneyama, Takashi
    Akimoto, Takuma
    PHYSICAL REVIEW E, 2019, 100 (01)
  • [38] Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation
    Lim, S. C.
    Teo, L. P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [39] Fractional Brownian motion in superharmonic potentials and non-Boltzmann stationary distributions
    Guggenberger, Tobias
    Chechkin, Aleksei
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (29)
  • [40] Statistical test for fractional Brownian motion based on detrending moving average algorithm
    Sikora, Grzegorz
    CHAOS SOLITONS & FRACTALS, 2018, 116 : 54 - 62