On a class of Hardy-Sobolev critical quasilinear elliptic systems on compact Riemannian manifolds

被引:0
作者
de Souza, Manasses [1 ]
Sousa, Nadiel de Oliveira [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
关键词
Second-order elliptic systems; Variational methods for elliptic systems; p-Laplacian system; Critical exponents; MULTIPLE POSITIVE SOLUTIONS; SCALAR CURVATURE; EQUATIONS;
D O I
10.1016/j.jmaa.2024.128581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the existence and regularity of solutions to the critical system {-Delta(p,g)u + a(x)|u|(p-2)u + b(x) [(p - 1)|u|(p-2) + |v|(p-2)]/p v = alpha/p*(s) f(x)u|u|(alpha-2)|v|(beta)/d(g)(x, x(0))(s) in M, -Delta(p,g)v + b(x) [(p - 1)|v|(p-2) + |u|(p-2)]/p u + c(x)|v|(p-2)v = beta/p*(s) f(x)v|v|(beta-2)|u|(alpha)/d(g)(x, x(0))(s) in M, where (M, g) is a smooth closed Riemannian manifold of dimension n >= 2, d(g) is the Riemannian distance, Delta(p,g) = div(g)(|del(g)u|(p-2)del(g)u) is the p-Laplace-Beltrami operator on (M, g), p is an element of(1, n), a, b, c is an element of C-0,C-rho(M) for some rho is an element of(0, 1), with b equivalent to 0 when 1 < p < 2, x(0) is an element of M, s is an element of[0, p), f is a smooth function in M with f(x0) = max(M) f > 0, and alpha > 1, beta > 1are two real numbers such that alpha + beta = p* (s), where p* (s) = p(n - s)/(n - p) denotes the critical Hardy-Sobolev exponent. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:35
相关论文
共 39 条
[1]   On systems of elliptic equations involving subcritical or critical Sobolev exponents [J].
Alves, CO ;
de Morais, DC ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :771-787
[2]  
AUBIN T, 1991, B SCI MATH, V115, P125
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]   On elliptic system involving critical Sobolev-Hardy exponents [J].
Bouchekif, Mohammed ;
Nasri, Yasmina .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2008, 5 (02) :237-252
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   Regularity and Morse Index of the Solutions to Critical Quasilinear Elliptic Systems [J].
Carmona, Jose ;
Cingolani, Silvia ;
Martinez-Aparicio, Pedro J. ;
Vannella, Giuseppina .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (10) :1675-1711
[7]  
Chabrowski J., 2001, COLLOQ MATH-WARSAW, V90, P19, DOI DOI 10.4064/CM90-1-2
[8]   Hardy-Sobolev equation on compact Riemannian manifolds involving p-Laplacian [J].
Chen, Nanbo ;
Liu, Xiaochun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
[9]   Mountain pass solution to a perturbated Hardy-Sobolev equation involving p-Laplacian on compact Riemannian manifolds [J].
Chen, Yuhan ;
Chen, Nanbo ;
Liu, Xiaochun .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (12) :2975-2994
[10]   Multiplicity of solutions for Schrödinger systems with critical exponent via Ljusternik–Schnirelman theory [J].
Chergui T. ;
Tas S. .
Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (2) :267-289