On zero behavior of higher-order Sobolev-type discrete q-Hermite I orthogonal polynomials

被引:0
作者
Huertas, Edmundo J. [1 ]
Lastra, Alberto [1 ]
Soria-Lorente, Anier [2 ]
Soto-Larrosa, Victor [1 ]
机构
[1] Univ Alcala, Dept Fis & Matemat, Ctra Madrid Barcelona Km 33,600, Alcala De Henares 28805, Madrid, Spain
[2] Univ Granma, Dept Tecnol, Carretera Bayamo Manzanillo Km 17,5, Bayamo 85100, Cuba
关键词
Orthogonal polynomials; Sobolev-type orthogonal polynomials; q-Hermite polynomials; q-Hypergeometric series; HARMONIC-OSCILLATOR; AL-SALAM; SEQUENCES; EQUATIONS; RESPECT;
D O I
10.1007/s11075-024-01868-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the sequence of monic q-Hermite I-Sobolev type orthogonal polynomials of higher-order, denoted by {Hn(x; q)} n=0, which are orthogonal with respect to the following non-standard inner product involving q-differences: p, q . = 1 -1 f (x) g (x) (qx,-qx; q)8dq (x) +. (D j q f)(a)(D j q g)( a), where. belongs to the set of positive real numbers, D j q denotes the j -th q -discrete analogue of the derivative operator, q ja. R\(-1, 1), and (qx,-qx; q)8 dq (x) denotes the orthogonality weight with its points of increase in a geometric progression. Connection formulas between these polynomials and standard q-Hermite I polynomials are deduced. The basic hypergeometric representation of Hn(x; q) is obtained. Moreover, for certain real values of a satisfying the condition q ja. R\(-1, 1), we present results concerning the location of the zeros of Hn( x; q) and perform a comprehensive analysis of their asymptotic behavior as the parameter. tends to infinity.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 27 条
[1]   SOME ORTHOGONAL Q-POLYNOMIALS [J].
ALSALAM, WA ;
CARLITZ, L .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (1-2) :47-&
[2]  
[Anonymous], 1970, Numerische Math, DOI DOI 10.1007/BF02163334
[3]   First-order non-homogeneous q-difference equation for Stieltjes function characterizing q-orthogonal polynomials [J].
Arvesu, J. ;
Soria-Lorente, A. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (05) :814-838
[4]  
ASKEY R, 1993, SYMMETRIES IN SCIENCE VI, P57
[5]   THE Q-HARMONIC OSCILLATOR AND THE AL-SALAM AND CARLITZ POLYNOMIALS [J].
ASKEY, R ;
SUSLOV, SK .
LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (02) :123-132
[6]  
Atakishiyev NM., 1991, THEOR MATH PHYS, V85, P442
[7]  
Atakishiyev NM., 1991, THEOR MATH PHYS, V87, P1055
[8]  
BANNAI E, 1990, NATO ADV SCI I C-MAT, V294, P25
[9]   Chain sequences and symmetric generalized orthogonal polynomials [J].
Bracciali, CF ;
Dimitrov, DK ;
Ranga, AS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 143 (01) :95-106
[10]   Analytic properties of some basic hypergeometric-Sobolev-type orthogonal polynomials [J].
Costas-Santos, Roberto S. ;
Soria-Lorente, Anier .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (11) :1715-1733