Bridging multimodal data and battery science with machine learning

被引:6
作者
Ning, Yanbin [1 ]
Yang, Feng [1 ]
Zhang, Yan [1 ]
Qiang, Zhuomin [1 ]
Yin, Geping [1 ]
Wang, Jiajun [1 ]
Lou, Shuaifeng [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, State Key Lab Space Power Sources, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
AVAILABLE-POWER PREDICTION; LITHIUM-SULFUR BATTERIES; NANO-COMPUTED TOMOGRAPHY; ADVERSARIAL NETWORKS; STATE; IDENTIFICATION; EVOLUTION; PHASE; MICROSCOPY; INTERFACES;
D O I
10.1016/j.matt.2024.04.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multimodal data hold paramount significance in the realm of battery science research. Traditional manual tools for data analysis have proven inadequate in meeting the demands of processing and mining multimodal data information. Machine learning emerges as a vital conduit between multimodal data and battery science. This review comprehensively organizes the recent advancements in multimodal data-driven research employing machine learning methodologies within the field of battery research. Specifically, it explores material-data-driven approaches to accelerate the development of advanced battery materials and image-data-driven schemes for cross-scale battery structure analysis and image enhancement, as well as battery assessment driven by condition data using both traditional machine learning and neural-network models. Furthermore, this review delves into the full potential of machine learning in the domain of advanced battery science research, encompassing aspects such as the accumulation of training data, the development of machine learning models, and the application of advanced analysis methods.
引用
收藏
页码:2011 / 2032
页数:22
相关论文
共 104 条
[1]   Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes [J].
Ahmad, Zeeshan ;
Xie, Tian ;
Maheshwari, Chinmay ;
Grossman, Jeffrey C. ;
Viswanathan, Venkatasubramanian .
ACS CENTRAL SCIENCE, 2018, 4 (08) :996-1006
[2]   Understanding Battery Interfaces by Combined Characterization and Simulation Approaches: Challenges and Perspectives [J].
Atkins, Duncan ;
Ayerbe, Elixabete ;
Benayad, Anass ;
Capone, Federico G. ;
Capria, Ennio ;
Castelli, Ivano E. ;
Cekic-Laskovic, Isidora ;
Ciria, Raul ;
Dudy, Lenart ;
Edstrom, Kristina ;
Johnson, Mark R. ;
Li, Hongjiao ;
Lastra, Juan Maria Garcia ;
De Souza, Matheus Leal ;
Meunier, Valentin ;
Morcrette, Mathieu ;
Reichert, Harald ;
Simon, Patrice ;
Rueff, Jean-Pascal ;
Sottmann, Jonas ;
Wenzel, Wolfgang ;
Grimaud, Alexis .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[3]   Machine learning for continuous innovation in battery technologies [J].
Aykol, Muratahan ;
Herring, Patrick ;
Anapolsky, Abraham .
NATURE REVIEWS MATERIALS, 2020, 5 (10) :725-727
[4]   Synchrotron radiation based operando characterization of battery materials [J].
Black, Ashley P. P. ;
Sorrentino, Andrea ;
Fauth, Francois ;
Yousef, Ibraheem ;
Simonelli, Laura ;
Frontera, Carlos ;
Ponrouch, Alexandre ;
Tonti, Dino ;
Palacin, M. Rosa .
CHEMICAL SCIENCE, 2023, 14 (07) :1641-1665
[5]   X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling [J].
Carter, Rachel ;
Huhman, Brett ;
Love, Corey T. ;
Zenyuk, Iryna V. .
JOURNAL OF POWER SOURCES, 2018, 381 :46-55
[6]   Semi-supervised robust deep neural networks for multi-label image classification [J].
Cevikalp, Hakan ;
Benligiray, Burak ;
Gerek, Omer Nezih .
PATTERN RECOGNITION, 2020, 100
[7]   Machine learning enabled autonomous microstructural characterization in 3D samples [J].
Chan, Henry ;
Cherukara, Mathew ;
Loeffler, Troy D. ;
Narayanan, Badri ;
Sankaranarayanan, Subramanian K. R. S. .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[8]   Prediction of lithium-ion battery capacity with metabolic grey model [J].
Chen, Lin ;
Lin, Weilong ;
Li, Junzi ;
Tian, Binbin ;
Pan, Haihong .
ENERGY, 2016, 106 :662-672
[9]   Applying Machine Learning to Rechargeable Batteries: From the Microscale to the Macroscale [J].
Chen, Xiang ;
Liu, Xinyan ;
Shen, Xin ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (46) :24354-24366
[10]   Generative Adversarial Networks An overview [J].
Creswell, Antonia ;
White, Tom ;
Dumoulin, Vincent ;
Arulkumaran, Kai ;
Sengupta, Biswa ;
Bharath, Anil A. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :53-65