Modeling mosquito-borne disease dynamics via stochastic differential equations and generalized tempered stable distribution

被引:1
作者
Sabbar, Yassine [1 ]
Raezah, Aeshah A. [2 ]
机构
[1] Moulay Ismail Univ Meknes, MAIS Lab, MAMCS Grp, FST Errachidia, POB 509, Errachidia 52000, Morocco
[2] King Khalid Univ Abha, Fac Sci, Dept Math, Abha 62529, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
epidemic model; mosquito-borne disease; GTS distribution; Levy jumps; Levy measure; MATHEMATICAL-MODEL; SENSITIVITY-ANALYSIS; MALARIA; DENGUE; TRANSMISSION; STABILITY; SPREAD;
D O I
10.3934/math.20241092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we introduce an enhanced stochastic model for mosquito-borne diseases that incorporates quarantine measures and employs Le<acute accent>vy jumps with the generalized tempered stable (GTS) distribution. Our proposed model lacks both endemic and disease-free states, rendering the conventional approach of assessing disease persistence or extinction based on asymptotic behavior inapplicable. Instead, we adopt a novel stochastic analysis approach to demonstrate the potential for disease eradication or continuation. Numerical examples validate the accuracy of our results and compare the outcomes of our model with the GTS distribution against the standard system using basic Le<acute accent>vy jumps. By accounting for the heavy-tailed nature of disease incidence or vector abundance, the GTS distribution enhances the precision of epidemiological models and predictions.
引用
收藏
页码:22454 / 22485
页数:32
相关论文
共 50 条
  • [1] Modeling the spread and control of dengue with limited public health resources
    Abdelrazec, Ahmed
    Belair, Jacques
    Shan, Chunhua
    Zhu, Huaiping
    [J]. MATHEMATICAL BIOSCIENCES, 2016, 271 : 136 - 145
  • [2] An updated review of Zika virus
    Abushouk, Abdelrahman Ibrahim
    Negida, Ahmed
    Ahmed, Hussien
    [J]. JOURNAL OF CLINICAL VIROLOGY, 2016, 84 : 53 - 58
  • [3] Optimal control strategies for dengue transmission in pakistan
    Agusto, F. B.
    Khan, M. A.
    [J]. MATHEMATICAL BIOSCIENCES, 2018, 305 : 102 - 121
  • [4] A novel SIRS epidemic model for two diseases incorporating treatment functions, media coverage, and three types of noise
    Alkhazzan, Abdulwasea
    Wang, Jungang
    Nie, Yufeng
    Khan, Hasib
    Alzabut, Jehad
    [J]. CHAOS SOLITONS & FRACTALS, 2024, 181
  • [5] A stochastic Susceptible Vaccinees Infected Recovered epidemic model with three types of noises
    Alkhazzan, Abdulwasea
    Wang, Jungang
    Nie, Yufeng
    Khan, Hasib
    Alzabut, Jehad
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8748 - 8770
  • [6] A mathematical model of malaria transmission in a periodic environment
    Bakary, Traore
    Boureima, Sangare
    Sado, Traore
    [J]. JOURNAL OF BIOLOGICAL DYNAMICS, 2018, 12 (01) : 400 - 432
  • [7] Bertoin J., 1996, LEVY PROCESSES
  • [8] Boyarchenko S. I., 2000, INT J THEORET APPL F, V3, P549, DOI DOI 10.1142/S0219024900000541
  • [9] Global dynamics of a dengue epidemic mathematical model
    Cai, Liming
    Guo, Shumin
    Li, XueZhi
    Ghosh, Mini
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (04) : 2297 - 2304
  • [10] The fine structure of asset returns: An empirical investigation
    Carr, P
    Geman, H
    Madan, DB
    Yor, M
    [J]. JOURNAL OF BUSINESS, 2002, 75 (02) : 305 - 332