Automatic image analysis applied to the recognition of quartz surface microtextures using neural network

被引:0
作者
Sikora, Pavel [1 ]
Kiac, Martin [1 ]
Costa, Pedro J. M. [2 ,3 ]
Molinero-Garcia, Alberto [4 ,5 ]
Gorska, Martyna E. [6 ]
机构
[1] Brno Univ Technol, Fac Elect Engn & Commun, Dept Telecommun, Technicka 12, Brno 616 00, Czech Republic
[2] Univ Coimbra, Fac Sci & Technol, Dept Earth Sci, Edificio Cent,Rua Silvio Lima, P-3030790 Coimbra, Portugal
[3] Univ Lisbon, Fac Sci, Inst Dom Luiz, Edificio C1, P-1749016 Lisbon, Portugal
[4] Univ Huelva, Dept Earth Sci, Campus El Carmen, Huelva 21071, Spain
[5] Univ Huelva, Res Ctr Nat Resources Hlth & Environm RENSMA, Campus El Carmen, Huelva 21071, Spain
[6] Nicolaus Copernicus Univ Torun, Fac Earth Sci & Spatial Management, Lwowska 1, PL-87100 Torun, Poland
关键词
Artificial intelligence; Machine learning; Segmentation; SEM; Quartz microtextures; DeepGrain; GRAINS; MICROMORPHOLOGY; SEM;
D O I
10.1016/j.micron.2024.103638
中图分类号
TH742 [显微镜];
学科分类号
摘要
Microtextures imprinted on the surface of quartz grains provide in-depth information on the environmental conditions and sedimentary processes that affected the study sediments. Microtextural analyses are therefore widely used in the provenance studies of sediments. In order to minimize the subjectivity of microtextural recognition, we propose a new software, called DeepGrain (source codes are available at https://github.com/d eepgrains/deepgrain), for the automatic identification of microtextures on the surface of quartz grains using the DeepLabV3 model with applied improving techniques. The approach provides an accuracy of 99 % of the area of the tested grains and 63 % of the mechanical features on the surfaces of the tested grains. The inference of a single SEM image of quartz grain took an average of 3.10 sec, leading to a significant reduction in the analysis time of a single grain.
引用
收藏
页数:10
相关论文
共 50 条
[41]   WP-DRnet: A novel wear particle detection and recognition network for automatic ferrograph image analysis [J].
Peng, Yeping ;
Cai, Junhao ;
Wu, Tonghai ;
Cao, Guangzhong ;
Kwok, Ngaiming ;
Peng, Zhongxiao .
TRIBOLOGY INTERNATIONAL, 2020, 151
[42]   Recognition of Urdu Handwritten Alphabet Using Convolutional Neural Network (CNN) [J].
Ahmed, Gulzar ;
Alyas, Tahir ;
Iqbal, Muhammad Waseem ;
Ashraf, Muhammad Usman ;
Alghamdi, Ahmed Mohammed ;
Bahaddad, Adel A. ;
Almarhabi, Khalid Ali .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02) :2967-2984
[43]   Automatic Parameter Setting of Pulse Coupled Neural Network for Image Segmentation [J].
Dharwal, Devanshu ;
Shanker, Ravi ;
Bhattacharya, Mahua .
2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, :2157-2161
[44]   Automatic Aircraft Target Recognition by ISAR Image Processing based on Neural Classifier [J].
Benedetto, F. ;
Fulginei, F. Riganti ;
Laudani, A. ;
Albanese, G. .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2012, 3 (08) :96-103
[45]   A comprehensive survey on automatic speech recognition using neural networks [J].
Dhanjal, Amandeep Singh ;
Singh, Williamjeet .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) :23367-23412
[46]   SEMANTIC IMAGE ANALYSIS USING A SYMBOLIC NEURAL ARCHITECTURE [J].
Kollia, Ilianna ;
Simou, Nikolaos ;
Stafylopatis, Andreas ;
Kollias, Stefanos .
IMAGE ANALYSIS & STEREOLOGY, 2010, 29 (03) :159-172
[47]   A neural network approach for image analysis in optometry [J].
Netto, AV ;
de Oliveira, MCF .
ALGORITHMS AND SYSTEMS FOR OPTICAL INFORMATION PROCESSING VI, 2002, 4789 :75-84
[48]   Image recognition using convolutional neural networks for classification of honey bee subspecies [J].
Dario De Nart ;
Cecilia Costa ;
Gennaro Di Prisco ;
Emanuele Carpana .
Apidologie, 2022, 53
[49]   Image-based recognition of parasitoid wasps using advanced neural networks [J].
Shirali, Hossein ;
Huebner, Jeremy ;
Both, Robin ;
Raupach, Michael ;
Reischl, Markus ;
Schmidt, Stefan ;
Pylatiuk, Christian .
INVERTEBRATE SYSTEMATICS, 2024, 38 (06)
[50]   Image recognition using convolutional neural networks for classification of honey bee subspecies [J].
de Nart, Dario ;
Costa, Cecilia ;
di Prisco, Gennaro ;
Carpana, Emanuele .
APIDOLOGIE, 2022, 53 (01)