Information Complexity of Mixed-Integer Convex Optimization

被引:0
|
作者
Basu, Amitabh [1 ]
Jiang, Hongyi [2 ]
Kerger, Phillip [1 ]
Molinaro, Marco [3 ,4 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[2] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
[3] Microsoft Res, Redmond, WA 98052 USA
[4] Pontificia Univ Catolica Rio de Janeiro, Comp Sci Dept, Rio de Janeiro, Brazil
基金
美国国家科学基金会;
关键词
Mixed-integer optimization; Information complexity;
D O I
10.1007/978-3-031-32726-1_1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the information complexity of mixed-integer convex optimization under different kinds of oracles. We establish new lower bounds for the standard first-order oracle, improving upon the previous best known lower bound. This leaves only a lower order linear term (in the dimension) as the gap between the lower and upper bounds. Further, we prove the first set of results in the literature (to the best of our knowledge) on information complexity with respect to oracles based on first-order information but restricted to binary queries, and discuss various special cases of interest thereof.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Approximate Multiparametric Mixed-Integer Convex Programming
    Malyuta, Danylo
    Acikmese, Behcet
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (01): : 157 - 162
  • [32] Extended Formulations in Mixed-Integer Convex Programming
    Lubin, Miles
    Yamangil, Emre
    Bent, Russell
    Vielma, Juan Pablo
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 102 - 113
  • [33] Feasibility in reverse convex mixed-integer programming
    Obuchowska, Wieslawa T.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 218 (01) : 58 - 67
  • [34] Outer approximation for generalized convex mixed-integer nonlinear robust optimization problems
    Kuchlbauer, Martina
    OPERATIONS RESEARCH LETTERS, 2025, 60
  • [35] Distributed Optimization for Convex Mixed-Integer Programs based on Projected Subgradient Algorithm
    Sun, Chuangchuang
    Dai, Ran
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 2581 - 2586
  • [36] Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded
    Mistry, Miten
    Letsios, Dimitrios
    Krennrich, Gerhard
    Lee, Robert M.
    Misener, Ruth
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (03) : 1103 - 1119
  • [37] Note on the complexity of the mixed-integer hull of a polyhedron
    Hildebrand, Robert
    Oertel, Timm
    Weismantel, Robert
    OPERATIONS RESEARCH LETTERS, 2015, 43 (03) : 279 - 282
  • [38] Complexity of Branch-and-Bound and Cutting Planes in Mixed-Integer Optimization — II
    Amitabh Basu
    Michele Conforti
    Marco Di Summa
    Hongyi Jiang
    Combinatorica, 2022, 42 : 971 - 996
  • [39] Granularity in Nonlinear Mixed-Integer Optimization
    Neumann, Christoph
    Stein, Oliver
    Sudermann-Merx, Nathan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 184 (02) : 433 - 465
  • [40] Granularity in Nonlinear Mixed-Integer Optimization
    Christoph Neumann
    Oliver Stein
    Nathan Sudermann-Merx
    Journal of Optimization Theory and Applications, 2020, 184 : 433 - 465