Multiplication between elements in martingale Hardy spaces and their dual spaces

被引:0
作者
Bakas, Odysseas [1 ]
Xu, Zhendong [2 ,3 ]
Zhai, Yujia [4 ]
Zhang, Hao [5 ]
机构
[1] Univ Patras, Dept Math, Patras 26504, Greece
[2] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[3] Univ Bourgogne Franche Comte, Lab Math, F-25030 Besancon, France
[4] Inst Adv Study Math, Harbin Inst Technol, Harbin, Peoples R China
[5] Univ Illinois, Dept Math, Champaign, IL USA
关键词
Paraproducts; Martingales; Musielak-Orlicz spaces; Doubling spaces; POINTWISE MULTIPLIERS; BMO; DECOMPOSITION; PRODUCTS;
D O I
10.1016/j.jfa.2024.110467
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of the paper, we establish continuous bilinear decompositions that arise in the study of products between elements in martingale Hardy spaces H-p (0 < p <= 1) and functions in their dual spaces. Our decompositions are based on martingale paraproducts. The second part of the paper concerns applications of the method developed for the classical martingales in the first part. In particular, we build a connection between Hardy spaces on spaces of homogenous type equipped with a doubling measure and Hardy spaces with respect to the corresponding dyadic martingales. Using the method introduced in the first part, we obtain analogous results for dyadic martingales on spaces of homogenous type, which, thanks to the aforementioned connection, yield conclusions for products between elements in Hardy spaces and those in their duals on spaces of homogenous type. The key property of martingale Hardy spaces in the study is that they admit the atomic decomposition, for which we provide an interpretation via duality. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:62
相关论文
共 32 条
  • [1] Orthonormal bases of regular wavelets in spaces of homogeneous type (vol 34, pg 266, 2013)
    Auscher, Pascal
    Hytonen, Tuomas
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (03) : 568 - 569
  • [2] Orthonormal bases of regular wavelets in spaces of homogeneous type
    Auscher, Pascal
    Hytonen, Tuomas
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (02) : 266 - 296
  • [3] Notes on Hlog: structural properties, dyadic variants, and bilinear H1-BMO mappings
    Bakas, Odysseas
    Pott, Sandra
    Rodriguez-Lopez, Salvador
    Sola, Alan
    [J]. ARKIV FOR MATEMATIK, 2022, 60 (02): : 231 - 275
  • [4] Products and commutators of martingales in H1 and BMO
    Bonami, Aline
    Jiao, Yong
    Xie, Guangheng
    Yang, Dachun
    Zhou, Dejian
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 180 : 188 - 229
  • [5] On the product of functions in BMO and H1
    Bonami, Aline
    Iwaniec, Tadeusz
    Jones, Peter
    Zinsmeister, Michel
    [J]. ANNALES DE L INSTITUT FOURIER, 2007, 57 (05) : 1405 - 1439
  • [6] Multiplication between Hardy spaces and their dual spaces
    Bonami, Aline
    Cao, Jun
    Ky, Luong Dang
    Liu, Liguang
    Yang, Dachun
    Yuan, Wen
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 131 : 130 - 170
  • [7] Atomic decomposition and weak factorization in generalized Hardy spaces of closed forms
    Bonami, Aline
    Feuto, Justin
    Grellier, Sandrine
    Ky, Luong Dang
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (07): : 676 - 702
  • [8] Factorization of some Hardy-type spaces of holomorphic functions
    Bonami, Aline
    Luong Dang Ky
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (10) : 817 - 821
  • [9] Paraproducts and products of functions in BMO(Rn) and H1 (Rn) through wavelets
    Bonami, Aline
    Grellier, Sandrine
    Luong Dang Ky
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (03): : 230 - 241
  • [10] MARTINGALE TRANSFORMS
    BURKHOLD.DL
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06): : 1494 - &