Unraveling the Hall-Petch to inverse Hall-Petch transition in nanocrystalline high entropy alloys under shock loading

被引:11
作者
Li, Wanghui [1 ]
Xiang, Meizhen [2 ]
Aitken, Zachary Howard [1 ]
Chen, Shuai [3 ]
Xu, Yilun [1 ]
Yang, Xinyu [1 ]
Pei, Qingxiang [1 ]
Wang, Jian [4 ]
Li, Xiaoyan [5 ]
Vastola, Guglielmo [1 ]
Gao, Huajian [5 ]
Zhang, Yong-Wei [1 ]
机构
[1] ASTAR, Inst High Performance Comp IHPC, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[2] Inst Appl Phys & Computat Math, Natl Key Lab Computat Phys, Beijing 100088, Peoples R China
[3] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[4] Univ Nebraska Lincoln, Mech & Mat Engn, Lincoln, NE 68588 USA
[5] Tsinghua Univ, Mechano Inst X, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Hall-Petch and Inverse Hall-Petch; Shock loading; Flow stress; High entropy alloy; Hierarchical deformations; MOLECULAR-DYNAMICS; INDUCED PLASTICITY; GRAIN-BOUNDARY; PHASE-TRANSITION; SINGLE-CRYSTAL; STRAIN-RATE; TEMPERATURE; STRENGTH; COMPRESSION; SIZE;
D O I
10.1016/j.ijplas.2024.104010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The transition from Hall-Petch (HP) to inverse Hall-Petch (IHP) behaviors associated with grain size reduction has been recognized for over two decades. However, the underlying mechanisms for such transition in high entropy alloys (HEAs) under dynamic loading, in which abundant deformation mechanisms could be activated either sequentially or simultaneously, remain unclear. Here, we investigate the HP to IHP transition in nanocrystalline CoCrFeMnNi HEAs under shock loading by examining their deformation mechanisms and flow stresses using large-scale molecular dynamics (MD) simulations. It is found that this transition is strongly dependent on the shock pressure as a result of the complex interplay among multiple competing deformation mechanisms, including the hardening mechanisms such as dislocations interactions and grain boundary (GB) blocking, as well as the softening mechanisms like phase formation, amorphization, GB thickening, and grain rotation. Moreover, there exists a critical shock pressure, which corresponds to the largest critical grain size for the HP-IHP transition. Below the critical shock pressure, the critical grain size increases with pressure due to a stronger hardening effect in grain interior (GIs), while above the critical pressure, the critical grain size first decreases and then undergoes a pressure-insensitive plateau before further decrease due to softening effects in GIs. A theoretical model that includes different deformation mechanisms is proposed for the first time to capture the shock pressure-dependent HP-IHP transition. Our work provides valuable guidance for optimizing the grain size of nanocrystalline HEAs for applications involving dynamic loadings.
引用
收藏
页数:18
相关论文
共 107 条
[1]   Dynamic fracture of tantalum under extreme tensile stress [J].
Albertazzi, Bruno ;
Ozaki, Norimasa ;
Zhakhovsky, Vasily ;
Faenov, Anatoly ;
Habara, Hideaki ;
Harmand, Marion ;
Hartley, Nicholas ;
Ilnitsky, Denis ;
Inogamov, Nail ;
Inubushi, Yuichi ;
Ishikawa, Tetsuya ;
Katayama, Tetsuo ;
Koyama, Takahisa ;
Koenig, Michel ;
Krygier, Andrew ;
Matsuoka, Takeshi ;
Matsuyama, Satoshi ;
McBride, Emma ;
Migdal, Kirill Petrovich ;
Morard, Guillaume ;
Ohashi, Haruhiko ;
Okuchi, Takuo ;
Pikuz, Tatiana ;
Purevjav, Narangoo ;
Sakata, Osami ;
Sano, Yasuhisa ;
Sato, Tomoko ;
Sekine, Toshimori ;
Seto, Yusuke ;
Takahashi, Kenjiro ;
Tanaka, Kazuo ;
Tange, Yoshinori ;
Togashi, Tadashi ;
Tono, Kensuke ;
Umeda, Yuhei ;
Vinci, Tommaso ;
Yabashi, Makina ;
Yabuuchi, Toshinori ;
Yamauchi, Kazuto ;
Yumoto, Hirokatsu ;
Kodama, Ryosuke .
SCIENCE ADVANCES, 2017, 3 (06)
[2]   Alterable tension-compression asymmetry in work hardening of an additively manufactured dual-phase high-entropy alloy [J].
Bai, Yunjian ;
Zhang, Kun ;
Chen, Tianyu ;
Liu, Zishang ;
Wang, Yunjiang ;
Wei, Bingchen .
INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 158
[3]   Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy [J].
Bhattacharjee, P. P. ;
Sathiaraj, G. D. ;
Zaid, M. ;
Gatti, J. R. ;
Lee, Chi ;
Tsai, Che-Wei ;
Yeh, Jien-Wei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 587 :544-552
[4]   Shock loading on AlN ceramics: A large scale molecular dynamics study [J].
Branicio, Paulo S. ;
Nakano, Aiichiro ;
Kalia, Rajiv K. ;
Vashishta, Priya .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 51 :122-131
[5]   Ultrahigh strength in nanocrystalline materials under shock loading [J].
Bringa, EM ;
Caro, A ;
Wang, YM ;
Victoria, M ;
McNaney, JM ;
Remington, BA ;
Smith, RF ;
Torralva, BR ;
Van Swygenhoven, H .
SCIENCE, 2005, 309 (5742) :1838-1841
[6]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[7]   Evolution of interfacial character and its influence on strain hardening in dual-phase high entropy alloys at nanoscale [J].
Cao, Z. H. ;
Zhai, G. Y. ;
Ma, Y. J. ;
Ding, L. P. ;
Li, P. F. ;
Liu, H. L. ;
Lu, H. M. ;
Cai, Y. P. ;
Wang, G. J. ;
Meng, X. K. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2021, 145 (145)
[8]   Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion [J].
Chandan, Avanish Kumar ;
Kishore, Kaushal ;
Hung, Pham Tran ;
Ghosh, Mainak ;
Chowdhury, Sandip Ghosh ;
Kawasaki, Megumi ;
Gubicza, Jeno .
INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 150
[9]   Ultimate Strength of Metals [J].
Chandross, Michael ;
Argibay, Nicolas .
PHYSICAL REVIEW LETTERS, 2020, 124 (12)
[10]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277