3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration

被引:16
|
作者
Zhao, Xiao [1 ,2 ]
Wang, Siyi [1 ,2 ]
Wang, Feilong [1 ,2 ]
Zhu, Yuan [1 ,2 ]
Gu, Ranli [1 ,2 ]
Yang, Fan [1 ,2 ]
Xu, Yongxiang [2 ,3 ]
Xia, Dandan [2 ,3 ]
Liu, Yunsong [1 ,2 ]
机构
[1] Peking Univ, Sch & Hosp Stomatol, Dept Prosthodont, Beijing 100081, Peoples R China
[2] NMPA, Natl Ctr Stomatol, Natl Clin Res Ctr Oral Dis, Beijing Key Lab Digital Stomatol,Res Ctr Engn & Te, Beijing 100081, Peoples R China
[3] Peking Univ, Sch & Hosp Stomatol, Dept Dent Mat, Beijing 100081, Peoples R China
关键词
3D printing; Bone tissue engineering; Magnesium; Osteogenic; Polycaprolactone; Scaffold; IN-VITRO; ORTHOPEDIC IMPLANTS; CALCIUM-PHOSPHATE; MAGNESIUM ALLOYS; VIVO; OSTEOBLASTS; ION; DIFFERENTIATION; OSTEOGENESIS; CORROSION;
D O I
10.1016/j.jma.2022.07.002
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In bone tissue engineering, polycaprolactone (PCL) is a promising material with good biocompatibility, but its poor degradation rate, mechanical strength, and osteogenic properties limit its application. In this study, we developed an Mg-1Ca/polycaprolactone (Mg-1Ca/PCL) composite scaffolds to overcome these limitations. We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5, 10, and 20 wt%. Porous scaffolds with controlled macro- and microstructure were printed using the fused deposition modeling method. We explored the mechanical strength, biocompatibility, osteogenesis performance, and molecular mechanism of the Mg-1Ca/PCL composites. The 5 and 10 wt% Mg-1Ca/PCL composites were found to have good biocompatibility. Moreover, they promoted the mechanical strength, proliferation, adhesion, and osteogenic differentiation of human bone marrow stem cells (hBMSCs) of pure PCL. In vitro degradation experiments revealed that the composite material stably released Mg 2 + ions for a long period; it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth. Microcomputed tomography and histological analysis showed that both 5 and 10 wt% Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects. Our results indicated that the Wnt/ beta -catenin pathway was involved in the osteogenic effect. Therefore, Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application. Statement of significance: Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects. However, there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds. This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities. Furthermore, the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold. The obtained porous scaffolds can significantly promote the regeneration of bone defects. (c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University
引用
收藏
页码:966 / 979
页数:14
相关论文
共 50 条
  • [1] 3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration
    Xiao Zhao
    Siyi Wang
    Feilong Wang
    Yuan Zhu
    Ranli Gu
    Fan Yang
    Yongxiang Xu
    Dandan Xia
    Yunsong Liu
    Journal of Magnesium and Alloys, 2024, 12 (03) : 966 - 979
  • [2] 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration
    Javkhlan, Zolzaya
    Hsu, Sheng-Hao
    Chen, Rung-Shu
    Chen, Min -Huey
    JOURNAL OF THE FORMOSAN MEDICAL ASSOCIATION, 2024, 123 (01) : 71 - 77
  • [3] Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration
    Heo, Seong-Yeong
    Ko, Seok-Chun
    Oh, Gun-Woo
    Kim, Namwon
    Choi, Il-Whan
    Park, Won Sun
    Jung, Won-Kyo
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2019, 107 (06) : 1937 - 1944
  • [4] 3D-printed polycaprolactone-magnetic nanoparticles composite multifunctional scaffolds for bone tissue regeneration and hyperthermia treatment
    Kanwar, Susheem
    Vijayavenkataraman, Sanjairaj
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (06) : 391 - 406
  • [5] Delivering Proangiogenic Factors from 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration
    Liu, Haoming
    Du, Yingying
    Yang, Gaojie
    Hu, Xixi
    Wang, Lin
    Liu, Bin
    Wang, Jianglin
    Zhang, Shengmin
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (23)
  • [6] 3D-Printed Composite Bioceramic Scaffolds for Bone and Cartilage Integrated Regeneration
    Xu, Nanjian
    Lu, Dezhi
    Qiang, Lei
    Liu, Yihao
    Yin, Dalin
    Wang, Zhiyong
    Luo, Yongxiang
    Yang, Chen
    Ma, Zhenjiang
    Ma, Hui
    Wang, Jinwu
    ACS OMEGA, 2023, 8 (41): : 37918 - 37926
  • [7] Comparison of 3D-printed mesoporous calcium silicate/polycaprolactone and mesoporous Bioacive glass/polycaprolactone scaffolds for bone regeneration
    Feng, Xu
    Wu, Yifei
    Bao, Feng
    Chen, Xuhong
    Gong, Jianghao
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 278 : 348 - 353
  • [8] Biomimetic Hydroxyapatite on 3D-Printed Nanoattapulgite/Polycaprolactone Scaffolds for Bone Regeneration of Rat Cranium Defects
    Dai, Ting
    Wu, Xiaoyu
    Liu, Chun
    Ni, Su
    Li, Jingyan
    Zhang, Linxiang
    Wang, Jiafeng
    Tan, Yadong
    Fan, Shijie
    Zhao, Hongbin
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 10 (01) : 455 - 467
  • [9] 3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration
    Qi, Jin
    Wang, Yili
    Chen, Liping
    Chen, Linjie
    Wen, Feng
    Huang, Lijiang
    Rueben, Pfukwa
    Zhang, Chunwu
    Li, Huaqiong
    REGENERATIVE BIOMATERIALS, 2023, 10
  • [10] 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration
    Huang, Hao
    Qiang, Lei
    Fan, Minjie
    Liu, Yihao
    Yang, Anchun
    Chang, Dongbiao
    Li, Jinsheng
    Sun, Tong
    Wang, Yiwei
    Guo, Ruoyi
    Zhuang, Hanjie
    Li, Xiangyu
    Guo, Tailin
    Wang, Jinwu
    Tan, Huan
    Zheng, Pengfei
    Weng, Jie
    BIOACTIVE MATERIALS, 2024, 31 : 18 - 37