Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression

被引:0
|
作者
Nassiri, Isar [1 ,2 ,3 ,4 ]
Kwok, Andrew J. [2 ,5 ]
Bhandari, Aneesha [2 ]
Bull, Katherine R. [2 ]
Garner, Lucy C. [6 ]
Klenerman, Paul [6 ,7 ,8 ]
Webber, Caleb [9 ,10 ]
Parkkinen, Laura [1 ,11 ]
Lee, Angela W. [2 ]
Wu, Yanxia [2 ]
Fairfax, Benjamin [12 ,13 ]
Knight, Julian C. [2 ,14 ]
Buck, David [2 ]
Piazza, Paolo [1 ,2 ]
机构
[1] Univ Oxford, Oxford GSK Inst Mol & Computat Med IMCM, Ctr Human Genet, Nuffield Dept Med, Oxford OX3 7BN, England
[2] Univ Oxford, Ctr Human Genet, Nuffield Dept Med, Oxford OX3 7BN, England
[3] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[4] Univ Oxford, Dept Psychiat, Oxford OX3 7JX, England
[5] Chinese Univ Hong Kong, Fac Med, Dept Med & Therapeut, Shatin, Hong Kong 999077, Peoples R China
[6] Univ Oxford, Nuffield Dept Med, Translat Gastroenterol Unit, Oxford OX3 9DU, England
[7] Univ Oxford, Peter Medawar Bldg Pathogen Res, Oxford OX1 3SY, England
[8] John Radcliffe Hosp, NIHR Oxford Biomed Res Ctr, Oxford OX3 9DU, England
[9] Univ Oxford, Oxford Parkinsons Dis Ctr, Dept Physiol Anat Genet, Oxford OX1 3PT, England
[10] Cardiff Univ, UK Dementia Res Inst, Cardiff CF24 4HQ, Wales
[11] Univ Oxford, Oxford Parkinsons Dis Ctr, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[12] Univ Oxford, MRC Weatherall Inst Mol Med, Oxford OX3 9DS, England
[13] Univ Oxford & Oxford Canc Ctr, Oxford Univ Hosp NHS Fdn Trust, Churchill Hosp, Dept Oncol, Oxford OX3 7DQ, England
[14] Univ Oxford, Chinese Acad Med Sci Oxford Inst, Oxford OX3 7BN, England
来源
BIOINFORMATICS ADVANCES | 2024年 / 4卷 / 01期
基金
英国惠康基金;
关键词
FACTOR 1A EXPRESSION; QUALITY-CONTROL; ASSOCIATION; FRAMEWORK; DISEASE;
D O I
10.1093/bioadv/vbae085
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps.Results We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells.Availability and implementation EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma
    Huang, Ruichao
    Wang, Xiaohu
    Yin, Xiangyun
    Zhou, Yaqi
    Sun, Jiansheng
    Yin, Zhongxiu
    Zhu, Zhi
    FRONTIERS IN GENETICS, 2022, 13
  • [42] Constructing Simulation Data with Dependence Structure for Unreliable Single-Cell RNA-Sequencing Data Using Copulas
    Fuetterer, Cornelia
    Schollmeyer, Georg
    Augustin, Thomas
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 216 - 224
  • [43] Characterization of iCell cardiomyocytes using single-cell RNA-sequencing methods
    Schmid, Christina
    Wohnhaas, Christian T.
    Hildebrandt, Tobias
    Baum, Patrick
    Rast, Georg
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2020, 106
  • [44] CELL SUBCLASS IDENTIFICATION IN SINGLE-CELL RNA-SEQUENCING DATA USING ORTHOGONAL NONNEGATIVE MATRIX FACTORIZATION
    Wang, Shuai
    Wu, Peng
    Zhou, Manqi
    Chang, Tsung-Hui
    Wu, Song
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 876 - 880
  • [45] Quantitative assessment of single-cell RNA-sequencing methods
    Angela R Wu
    Norma F Neff
    Tomer Kalisky
    Piero Dalerba
    Barbara Treutlein
    Michael E Rothenberg
    Francis M Mburu
    Gary L Mantalas
    Sopheak Sim
    Michael F Clarke
    Stephen R Quake
    Nature Methods, 2014, 11 : 41 - 46
  • [46] Reusability report: Learning the transcriptional grammar in single-cell RNA-sequencing data using transformers
    Sumeer Ahmad Khan
    Alberto Maillo
    Vincenzo Lagani
    Robert Lehmann
    Narsis A. Kiani
    David Gomez-Cabrero
    Jesper Tegner
    Nature Machine Intelligence, 2023, 5 : 1437 - 1446
  • [47] Reusability report: Learning the transcriptional grammar in single-cell RNA-sequencing data using transformers
    Khan, Sumeer Ahmad
    Maillo, Alberto
    Lagani, Vincenzo
    Lehmann, Robert
    Kiani, Narsis A.
    Gomez-Cabrero, David
    Tegner, Jesper
    NATURE MACHINE INTELLIGENCE, 2023, 5 (12) : 1437 - 1446
  • [48] Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression
    Cuomo, Anna S. E.
    Seaton, Daniel D.
    McCarthy, Davis J.
    Martinez, Iker
    Bonder, Marc Jan
    Garcia-Bernardo, Jose
    Amatya, Shradha
    Madrigal, Pedro
    Isaacson, Abigail
    Buettner, Florian
    Knights, Andrew
    Natarajan, Kedar Nath
    Vallier, Ludovic
    Marioni, John C.
    Chhatriwala, Mariya
    Stegle, Oliver
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [49] Power analysis of single-cell RNA-sequencing experiments
    Svensson, Valentine
    Natarajan, Kedar Nath
    Ly, Lam-Ha
    Miragaia, Ricardo J.
    Labalette, Charlotte
    Macaulay, Iain C.
    Cvejic, Ana
    Teichmann, Sarah A.
    NATURE METHODS, 2017, 14 (04) : 381 - +
  • [50] A Data-Driven Clustering Recommendation Method for Single-Cell RNA-Sequencing Data
    Tian, Yu
    Zheng, Ruiqing
    Liang, Zhenlan
    Li, Suning
    Wu, Fang-Xiang
    Li, Min
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (05) : 772 - 789