Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression

被引:0
|
作者
Nassiri, Isar [1 ,2 ,3 ,4 ]
Kwok, Andrew J. [2 ,5 ]
Bhandari, Aneesha [2 ]
Bull, Katherine R. [2 ]
Garner, Lucy C. [6 ]
Klenerman, Paul [6 ,7 ,8 ]
Webber, Caleb [9 ,10 ]
Parkkinen, Laura [1 ,11 ]
Lee, Angela W. [2 ]
Wu, Yanxia [2 ]
Fairfax, Benjamin [12 ,13 ]
Knight, Julian C. [2 ,14 ]
Buck, David [2 ]
Piazza, Paolo [1 ,2 ]
机构
[1] Univ Oxford, Oxford GSK Inst Mol & Computat Med IMCM, Ctr Human Genet, Nuffield Dept Med, Oxford OX3 7BN, England
[2] Univ Oxford, Ctr Human Genet, Nuffield Dept Med, Oxford OX3 7BN, England
[3] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[4] Univ Oxford, Dept Psychiat, Oxford OX3 7JX, England
[5] Chinese Univ Hong Kong, Fac Med, Dept Med & Therapeut, Shatin, Hong Kong 999077, Peoples R China
[6] Univ Oxford, Nuffield Dept Med, Translat Gastroenterol Unit, Oxford OX3 9DU, England
[7] Univ Oxford, Peter Medawar Bldg Pathogen Res, Oxford OX1 3SY, England
[8] John Radcliffe Hosp, NIHR Oxford Biomed Res Ctr, Oxford OX3 9DU, England
[9] Univ Oxford, Oxford Parkinsons Dis Ctr, Dept Physiol Anat Genet, Oxford OX1 3PT, England
[10] Cardiff Univ, UK Dementia Res Inst, Cardiff CF24 4HQ, Wales
[11] Univ Oxford, Oxford Parkinsons Dis Ctr, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[12] Univ Oxford, MRC Weatherall Inst Mol Med, Oxford OX3 9DS, England
[13] Univ Oxford & Oxford Canc Ctr, Oxford Univ Hosp NHS Fdn Trust, Churchill Hosp, Dept Oncol, Oxford OX3 7DQ, England
[14] Univ Oxford, Chinese Acad Med Sci Oxford Inst, Oxford OX3 7BN, England
来源
BIOINFORMATICS ADVANCES | 2024年 / 4卷 / 01期
基金
英国惠康基金;
关键词
FACTOR 1A EXPRESSION; QUALITY-CONTROL; ASSOCIATION; FRAMEWORK; DISEASE;
D O I
10.1093/bioadv/vbae085
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps.Results We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells.Availability and implementation EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Expression variation analysis for tumor heterogeneity in single-cell RNA-sequencing data
    Davis-Marcisak, Emily F.
    Orugunta, Pranay
    Stein-O'Brien, Genevieve
    Puram, Sidharth V.
    Torres, Evanthia Roussos
    Hopkins, Alexander
    Jaffee, Elizabeth M.
    Favorov, Alexander V.
    Afsari, Bahman
    Goff, Loyal A.
    Fertig, Elana J.
    CANCER RESEARCH, 2019, 79 (13)
  • [2] Isoform-level gene expression patterns in single-cell RNA-sequencing data
    Trung Nghia Vu
    Wills, Quin F.
    Kalari, Krishna R.
    Niu, Nifang
    Wang, Liewei
    Pawitan, Yudi
    Rantalainen, Mattias
    BIOINFORMATICS, 2018, 34 (14) : 2392 - 2400
  • [3] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Jong Kyoung Kim
    John C Marioni
    Genome Biology, 14
  • [4] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Kim, Jong Kyoung
    Marioni, John C.
    GENOME BIOLOGY, 2013, 14 (01): : 1 - 12
  • [5] bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data
    Tang, Wenhao
    Bertaux, Francois
    Thomas, Philipp
    Stefanelli, Claire
    Saint, Malika
    Marguerat, Samuel
    Shahrezaei, Vahid
    BIOINFORMATICS, 2020, 36 (04) : 1174 - 1181
  • [6] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [7] Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    Hyun Min Kang
    Meena Subramaniam
    Sasha Targ
    Michelle Nguyen
    Lenka Maliskova
    Elizabeth McCarthy
    Eunice Wan
    Simon Wong
    Lauren Byrnes
    Cristina M Lanata
    Rachel E Gate
    Sara Mostafavi
    Alexander Marson
    Noah Zaitlen
    Lindsey A Criswell
    Chun Jimmie Ye
    Nature Biotechnology, 2018, 36 : 89 - 94
  • [8] Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    Kang, Hyun Min
    Subramaniam, Meena
    Targ, Sasha
    Michelle Nguyen
    Maliskova, Lenka
    McCarthy, Elizabeth
    Wan, Eunice
    Wong, Simon
    Byrnes, Lauren
    Lanata, Cristina M.
    Gate, Rachel E.
    Mostafavi, Sara
    Marson, Alexander
    Zaitlen, Noah
    Criswell, Lindsey A.
    Ye, Chun Jimmie
    NATURE BIOTECHNOLOGY, 2018, 36 (01) : 89 - +
  • [9] LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering
    Specht, Alicia T.
    Li, Jun
    BIOINFORMATICS, 2017, 33 (05) : 764 - 766
  • [10] Single-Cell RNA-Sequencing in Glioma
    Eli Johnson
    Katherine L. Dickerson
    Ian D. Connolly
    Melanie Hayden Gephart
    Current Oncology Reports, 2018, 20