On weaker notions for Kähler-Ricci solitons

被引:0
作者
Pali, Nefton [1 ]
机构
[1] Univ Paris Saclay, Orsay Inst Math, 307 Michel Magat, F-91400 Orsay, France
关键词
53C25; 53C55; 32J15; RICCI FLOW;
D O I
10.1007/s00229-024-01577-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that shrinking K & auml;hler-Ricci solitons over a compact K & auml;hler manifold are gradient shrinking K & auml;hler-Ricci solitons. The proof relies on a remarkable identity on the kernels of a real and a complex elliptic operator proved in our solution of the variational stability problem for gradient shrinking K & auml;hler-Ricci solitons in Pali (Complex Manifolds 3(1):41-144, 2016).
引用
收藏
页码:753 / 769
页数:17
相关论文
共 12 条
  • [1] Cao HD, 1997, J DIFFER GEOM, V45, P257
  • [2] NONLINEAR MODELS IN 2 + EPSILON-DIMENSIONS
    FRIEDAN, DH
    [J]. ANNALS OF PHYSICS, 1985, 163 (02) : 318 - 419
  • [3] HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
  • [4] The Heterotic-Ricci Flow and Its Three-Dimensional Solitons
    Moroianu, Andrei
    Murcia, Angel J.
    Shahbazi, C. S.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
  • [5] Moroianu A, 2022, NEW YORK J MATH, V28, P1463
  • [6] Generalized Ricci Solitons
    Nurowski, Pawel
    Randall, Matthew
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) : 1280 - 1345
  • [7] Pali N, 2005, MANUSCRIPTA MATH, V118, P311, DOI 10.1007/s00229-005-0594-x
  • [8] Pali N., 2012, MATH Z, V276, P173
  • [9] The Soliton-Ricci Flow with variable volume forms
    Pali, Nefton
    [J]. COMPLEX MANIFOLDS, 2016, 3 (01): : 41 - 144
  • [10] Variational stability of Kahler-Ricci solitons
    Pali, Nefton
    [J]. ADVANCES IN MATHEMATICS, 2016, 290 : 15 - 35