Polymers on plasmonic metal nanoparticles: From symmetric coating to asymmetric surface patterning

被引:1
作者
Duan, Hanyi [1 ]
Muhuri, Debasmita [2 ]
He, Jie [1 ,2 ,3 ]
机构
[1] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[3] Univ Connecticut, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
GOLD NANOPARTICLES; NANORODS; MICELLAR; GROWTH; NANOCRYSTALS; ASSEMBLIES; VESICLES; DIMERS;
D O I
10.1016/j.polymer.2024.127115
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We summarize recent advances in the design of hybrid nanostructures through the combination of synthetic polymers and plasmonic nanoparticles (NPs). We categorize the synthetic methods of those polymer -coated metal NPs into two main strategies: direct encapsulation and chemical grafting, based on how NPs interact with polymers. In direct encapsulation, NPs with hydrophobic ligands are physically encapsulated into polymer micelles, primarily through hydrophobic interactions. We discuss strategies for controlling the loading numbers and locations of NPs within polymer micelles. On the other hand, polymer -grafted NPs (PGNPs) have synthetic polymers as ligands chemically grafted on NPs. We highlight that polymer ligands can asymmetrically coat metal NPs through hydrophobicity -driven phase segregation using homopolymers, BCPs and blocky random copolymers. This review provides insights into the methodologies and mechanisms to design new nanostructures of polymers and NPs, aiming to enhance the understanding of this rapidly evolving field.
引用
收藏
页数:11
相关论文
共 74 条
  • [41] Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications
    Murphy, CJ
    San, TK
    Gole, AM
    Orendorff, CJ
    Gao, JX
    Gou, L
    Hunyadi, SE
    Li, T
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (29) : 13857 - 13870
  • [42] Plasmonic materials
    Murray, W. Andrew
    Barnes, William L.
    [J]. ADVANCED MATERIALS, 2007, 19 (22) : 3771 - 3782
  • [43] Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers
    Nie, Zhihong
    Fava, Daniele
    Kumacheva, Eugenia
    Zou, Shan
    Walker, Gilbert C.
    Rubinstein, Michael
    [J]. NATURE MATERIALS, 2007, 6 (08) : 609 - 614
  • [44] Nanoengineering of optical resonances
    Oldenburg, SJ
    Averitt, RD
    Westcott, SL
    Halas, NJ
    [J]. CHEMICAL PHYSICS LETTERS, 1998, 288 (2-4) : 243 - 247
  • [45] Branched Aluminum Nanocrystals with Internal Hot Spots: Synthesis and Single-Particle Surface-Enhanced Raman Scattering
    Peng, Fei
    Lu, Shao-Yong
    Sun, Pan-Qi
    Zhang, Ning-Ning
    Liu, Kun
    [J]. NANO LETTERS, 2023, 23 (14) : 6567 - 6573
  • [46] Gold nanorods:: Synthesis, characterization and applications
    Pérez-Juste, J
    Pastoriza-Santos, I
    Liz-Marzán, LM
    Mulvaney, P
    [J]. COORDINATION CHEMISTRY REVIEWS, 2005, 249 (17-18) : 1870 - 1901
  • [47] Staged Surface Patterning and Self-Assembly of Nanoparticles Functionalized with End-Grafted Block Copolymer Ligands
    Rossner, Christian
    Zhulina, Ekaterina B.
    Kumacheva, Eugenia
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (27) : 9269 - 9274
  • [48] Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles
    Sanchez-Iglesias, Ana
    Grzelczak, Marek
    Altantzis, Thomas
    Goris, Bart
    Perez-Juste, Jorge
    Bals, Sara
    Van Tendeloo, Gustaaf
    Donaldson, Stephen H., Jr.
    Chmelka, Bradley F.
    Israelachvili, Jacob N.
    Liz-Marzan, Luis M.
    [J]. ACS NANO, 2012, 6 (12) : 11059 - 11065
  • [49] Macroscopic materials assembled from nanoparticle superlattices
    Santos, Peter J.
    Gabrys, Paul A.
    Zornberg, Leonardo Z.
    Lee, Margaret S.
    Macfarlane, Robert J.
    [J]. NATURE, 2021, 591 (7851) : 586 - +
  • [50] Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications
    Schluecker, Sebastian
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (19) : 4756 - 4795