Continual Robot Learning Using Self-Supervised Task Inference

被引:2
|
作者
Hafez, Muhammad Burhan [1 ]
Wermter, Stefan [1 ]
机构
[1] Univ Hamburg, Dept Informat, Knowledge Technol Grp, D-22527 Hamburg, Germany
关键词
Task analysis; Behavioral sciences; Multitasking; Training; Visualization; Robots; Robot learning; Continual multitask learning; robot control; self-supervised learning; task inference; IMITATION; REENACTMENT; INTENTIONS; OTHERS; GOAL;
D O I
10.1109/TCDS.2023.3315513
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Endowing robots with the human ability to learn a growing set of skills over the course of a lifetime as opposed to mastering single tasks is an open problem in robot learning. While multitask learning approaches have been proposed to address this problem, they pay little attention to task inference. In order to continually learn new tasks, the robot first needs to infer the task at hand without requiring predefined task representations. In this article, we propose a self-supervised task inference approach. Our approach learns action and intention embeddings from self-organization of the observed movement and effect parts of unlabeled demonstrations and a higher level behavior embedding from self-organization of the joint action-intention embeddings. We construct a behavior-matching self-supervised learning objective to train a novel task inference network (TINet) to map an unlabeled demonstration to its nearest behavior embedding, which we use as the task representation. A multitask policy is built on top of the TINet and trained with reinforcement learning to optimize performance over tasks. We evaluate our approach in the fixed-set and continual multitask learning settings with a humanoid robot and compare it to different multitask learning baselines. The results show that our approach outperforms the other baselines, with the difference being more pronounced in the challenging continual learning setting, and can infer tasks from incomplete demonstrations. Our approach is also shown to generalize to unseen tasks based on a single demonstration in one-shot task generalization experiments.
引用
收藏
页码:947 / 960
页数:14
相关论文
共 50 条
  • [31] Improving robot navigation through self-supervised Online learning
    Sofman, Boris
    Lin, Ellie
    Bagnell, J. Andrew
    Cole, John
    Vandapel, Nicolas
    Stentz, Anthony
    JOURNAL OF FIELD ROBOTICS, 2006, 23 (11-12) : 1059 - 1075
  • [32] Multi-Task Self-Supervised Learning for Disfluency Detection
    Wang, Shaolei
    Che, Wanxiang
    Liu, Qi
    Qin, Pengda
    Liu, Ting
    Wang, William Yang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9193 - 9200
  • [33] Joint-task Self-supervised Learning for Temporal Correspondence
    Li, Xueting
    Liu, Sifei
    De Mello, Shalini
    Wang, Xiaolong
    Kautz, Jan
    Yang, Ming-Hsuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [34] Efficient Self-Supervised Data Collection for Offline Robot Learning
    Endrawis, Shadi
    Leibovich, Gal
    Jacob, Guy
    Novik, Gal
    Tamar, Aviv
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 4650 - 4656
  • [35] Self-distillation improves self-supervised learning for DNA sequence inference
    Yu, Tong
    Cheng, Lei
    Khalitov, Ruslan
    Olsson, Erland B.
    Yang, Zhirong
    NEURAL NETWORKS, 2025, 183
  • [36] Respiratory sound classification using supervised and self-supervised learning
    Lee, Sunju
    Ha, Taeyoung
    Hyon, YunKyong
    Chung, Chaeuk
    Kim, Yoonjoo
    Woo, Seong-Dae
    Lee, Song-I
    RESPIROLOGY, 2023, 28 : 160 - 161
  • [37] Diffraction denoising using self-supervised learning
    Markovic, Magdalena
    Malehmir, Reza
    Malehmir, Alireza
    GEOPHYSICAL PROSPECTING, 2023, 71 (07) : 1215 - 1225
  • [38] Organoids Segmentation using Self-Supervised Learning: How Complex Should the Pretext Task Be?
    Haja, Asmaa
    van der Woude, Bart
    Schomaker, Lambert
    2023 10TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2023, 2023, : 17 - 27
  • [39] Self-supervised Learning of Depth Inference for Multi-view Stereo
    Yang, Jiayu
    Alvarez, Jose M.
    Liu, Miaomiao
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7522 - 7530
  • [40] Adversarial Continual Learning to Transfer Self-Supervised Speech Representations for Voice Pathology Detection
    Park, Dongkeon
    Yu, Yechan
    Katabi, Dina
    Kim, Hong Kook
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 (932-936) : 932 - 936