Synchronizability of multilayer totally homogeneous networks

被引:0
作者
Li, Xiang [1 ]
Wu, Yongqing [2 ]
机构
[1] Liaoning Tech Univ, Dept Math, Fuxin 123000, Peoples R China
[2] Liaoning Tech Univ, Sch Software, Huludao 125105, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2025年 / 39卷 / 11期
基金
中国国家自然科学基金;
关键词
Multilayer networks; totally homogeneous networks; supra-Laplacian matrix; synchronizability; higher-order topological features; DYNAMICS;
D O I
10.1142/S0217984924504785
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this study, we concentrate on the synchronizability of multilayer totally homogeneous networks. The eigenvalue spectrum of four typical multilayer networks, including multilayer nearest-neighbor regular networks, multilayer small-world networks, multilayer random networks and multilayer totally homogeneous networks, has been rigorously derived and the synchronizability of four typical multilayer networks has been compared due to the master stability function. Furthermore, numerical simulations are performed to validate the synchronizability of these multilayer networks. The results indicate that multilayer totally homogeneous networks exhibit optimal synchronizability. The Euler characteristic numbers and Betti numbers of these networks are derived, and their relationships with the synchronizability of multilayer networks are analyzed. We can observe that a negative correlation is exhibited between the Euler characteristic number and the synchronizability of multilayer networks, while a positive correlation is exhibited between the Betti number and the synchronizability of multilayer networks.
引用
收藏
页数:13
相关论文
共 26 条
  • [1] Multilayer Networks in a Nutshell
    Aleta, Alberto
    Moreno, Yamir
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 45 - 62
  • [2] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [3] Predicting brain age with complex networks: From adolescence to adulthood
    Bellantuono, Loredana
    Marzano, Luca
    La Rocca, Marianna
    Duncan, Dominique
    Lombardi, Angela
    Maggipinto, Tommaso
    Monaco, Alfonso
    Tangaro, Sabina
    Amoroso, Nicola
    Bellotti, Roberto
    [J]. NEUROIMAGE, 2021, 225
  • [4] Bianconi G, 2018, MULTILAYER NETWORKS: STRUCTURE AND FUNCTION, DOI 10.1093/oso/9780198753919.001.0001
  • [5] Fundamentals of spreading processes in single and multilayer complex networks
    de Arruda, Guilherme Ferraz
    Rodrigues, Francisco A.
    Moreno, Yamir
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2018, 756 : 1 - 59
  • [6] Della Rossa F, 2020, NAT COMMUN, V11, DOI [10.1038/s41467-020-18827-5, 10.1038/s41467-020-16343-0]
  • [7] Synchronizability of Multilayer Star and Star-Ring Networks
    Deng, Yang
    Jia, Zhen
    Yang, Feimei
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [8] Application of Complex Networks Theory in Urban Traffic Network Researches
    Ding, Rui
    Ujang, Norsidah
    Bin Hamid, Hussain
    Abd Manan, Mohd Shahrudin
    Li, Rong
    Albadareen, Safwan Subhi Mousa
    Nochian, Ashkan
    Wu, Jianjun
    [J]. NETWORKS & SPATIAL ECONOMICS, 2019, 19 (04) : 1281 - 1317
  • [9] Diffusion Dynamics on Multiplex Networks
    Gomez, S.
    Diaz-Guilera, A.
    Gomez-Gardenes, J.
    Perez-Vicente, C. J.
    Moreno, Y.
    Arenas, A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (02)
  • [10] Synchronizability of double-layer dumbbell networks
    Li, Juyi
    Luan, Yangyang
    Wu, Xiaoqun
    Lu, Jun-an
    [J]. CHAOS, 2021, 31 (07) : 073101