A Discrete Blaschke Theorem for Convex Polygons in 2-Dimensional Space Forms

被引:1
作者
Borisenko, Alexander [1 ,2 ]
Miquel, Vicente [2 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, 47 Nauky Ave, UA-61103 Kharkiv, Ukraine
[2] Univ Valencia, Dept Math, Burjassot 46100, Valencia, Spain
关键词
Blachske theorem; circumradius; curvature at a vertex; convex polygon; POINTWISE APPROXIMATION; CURVATURE; SETS;
D O I
10.15407/mag20.02.195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a 2-dimensional space form. Let P be a convex polygon in M. For these polygons, we define (and justify) a curvature kappa i at each vertex A(i) of the polygon and prove the following Blaschke-type theorem: "If P is a convex polygon in M with curvature at its vertices kappa(i) >= kappa(0) > 0, then the circumradius R of P satisfies ta(lambda) (R) <= pi /(2 kappa(0) ) and the equality holds if and only if the polygon is a doubly covered segment".
引用
收藏
页码:195 / 204
页数:10
相关论文
共 17 条
  • [1] Blaschke W., 1949, Kreis und Kugel
  • [2] Isoperimetric inequality for curves with curvature bounded below
    Borisenko, A. A.
    Drach, K. D.
    [J]. MATHEMATICAL NOTES, 2014, 95 (5-6) : 590 - 598
  • [3] Comparison theorems on convex hypersurfaces in Hadamard manifolds
    Borisenko, AA
    Miquel, V
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) : 191 - 202
  • [4] Relation between area and volume for λ-convex sets in Hadamard manifolds
    Borisenko, AA
    Gallego, E
    Reventós, A
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (03) : 267 - 280
  • [5] On the angular defect of triangulations and the pointwise approximation of curvatures
    Borrelli, V
    Cazals, F
    Morvan, JM
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (06) : 319 - 341
  • [6] Error term in pointwise approximation of the curvature of a curve
    Borrelli, Vincent
    Orgeret, Fabrice
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (07) : 538 - 550
  • [7] BROOKS JN, 1989, MEM AM MATH SOC, V80, P1
  • [8] Curvature for Polygons
    Cufi, Julia
    Reventos, Agusti
    Rodriguez, Carlos J.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (04) : 332 - 337
  • [9] Delgado J.A., 1979, J. Differential Geometry, V14, P489
  • [10] Inradius Estimates for Convex Domains in 2-Dimensional Alexandrov Spaces
    Drach, Kostiantyn
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2018, 6 (01): : 165 - 173