High-Performance Thermal Interface Material with A Radial Filler Skeleton

被引:0
作者
Zhang, Jingjing [1 ,2 ]
Liu, Daoqing [1 ,2 ]
Zeng, Jianhui [1 ,3 ]
Zeng, Xiaoliang [1 ]
Xu, Jian-Bin [4 ]
Yao, Yimin [1 ]
Sun, Rong [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Elect Mat, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou, Peoples R China
[3] South China Univ Technol, Guangdong Prov Key Lab New Met Mat Preparat & For, Guangzhou, Peoples R China
[4] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
来源
2023 24TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, ICEPT | 2023年
基金
中国国家自然科学基金;
关键词
thermal interface materials; freeze-casting; silicon carbide nanowire; polymer composite; CONDUCTIVITY; COMPOSITES;
D O I
10.1109/ICEPT59018.2023.10492391
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal Interface Materials (TIMs) are utilized in diverse electronic devices to optimize heat dissipation. They effectively enhance cooling efficiency, diminish temperature, and extend device longevity. Among the different types of TIMs, polymer-based composite materials represent a fundamental category that offers numerous advantages, including enhanced thermal performance, mechanical stability, and ease of application. The incorporation of fillers augments the heat dissipation capabilities of the composite material by facilitating efficient heat transfer from the heat source to the surrounding cooler environment. This article outlines the fabrication process of a three-dimensional, lightweight, and mechanically robust radial-oriented silicon carbide (SiC) framework through the utilization of freeze casting technique. The resulting framework exhibits a precisely oriented arrangement of thermal channels. Subsequently, paraffin wax (PA) is infused into the framework and subjected to curing, resulting in the formation of a SiC/PA composite material. The radial SiC/PA composite material exhibits a remarkable maximum thermal conductivity of 1.46 W/(m center dot K), achieved with a mere filler content of 1.77 vol%. This thermal conductivity surpasses that of pure PA matrix by a significant margin, showing an enhancement of 287.69%. Furthermore, the composite material outperforms other similar three-dimensional filler frameworks in terms of thermal conductivity. By manipulating the framework structure and modulating the phonon transmission pathway, the composite material effectively maximizes its inherent thermal conductivity even at low filler content.
引用
收藏
页数:5
相关论文
共 18 条
[1]   Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles [J].
Chen, Chao ;
Xue, Yang ;
Li, Zhi ;
Wen, Yingfeng ;
Li, Xiongwei ;
Wu, Fan ;
Li, Xiaojing ;
Shi, Dean ;
Xue, Zhigang ;
Xie, Xiaolin .
CHEMICAL ENGINEERING JOURNAL, 2019, 369 :1150-1160
[2]   Fundamental Understanding and Optimization Strategies for Dual-Ion Batteries: A Review [J].
Chen, Chong ;
Lee, Chun-Sing ;
Tang, Yongbing .
NANO-MICRO LETTERS, 2023, 15 (01)
[3]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[4]   Interactions among Fe2+, S2-, and Zn2+ tolerance, root anatomy, and radial oxygen loss in mangrove plants [J].
Cheng, Hao ;
Chen, Dan-Ting ;
Tam, Nora Fung-Yee ;
Chen, Gui-Zhu ;
Li, Shi-Yu ;
Ye, Zhi-Hong .
JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (07) :2619-2630
[5]   Performance of Thermal Interface Materials [J].
Chung, D. D. L. .
SMALL, 2022, 18 (16)
[6]   Creating Biomimetic Anisotropic Architectures with Co-Aligned Nanofibers and Macrochannels by Manipulating Ice Crystallization [J].
Fan, Linpeng ;
Li, Jing-Liang ;
Cai, Zengxiao ;
Wang, Xungai .
ACS NANO, 2018, 12 (06) :5780-5790
[7]   Superior thermal interface materials for thermal management [J].
Feng, Chang Ping ;
Bai, Lu ;
Bao, Rui-Ying ;
Wang, Shi-Wei ;
Liu, Zhengying ;
Yang, Ming-Bo ;
Chen, Jun ;
Yang, Wei .
COMPOSITES COMMUNICATIONS, 2019, 12 :80-85
[8]   Spider Web-Inspired Graphene Skeleton-Based High Thermal Conductivity Phase Change Nanocomposites for Battery Thermal Management [J].
Lin, Ying ;
Kang, Qi ;
Wei, Han ;
Bao, Hua ;
Jiang, Pingkai ;
Mai, Yiu-Wing ;
Huang, Xingyi .
NANO-MICRO LETTERS, 2021, 13 (01)
[9]   Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures-A Review of Novel Materials, Methods, and Applications [J].
Shao, Gaofeng ;
Hanaor, Dorian A. H. ;
Shen, Xiaodong ;
Gurlo, Aleksander .
ADVANCED MATERIALS, 2020, 32 (17)
[10]   Lightweight, Flexible Cellulose-Derived Carbon Aerogel@Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities [J].
Song, Ping ;
Liu, Bei ;
Liang, Chaobo ;
Ruan, Kunpeng ;
Qiu, Hua ;
Ma, Zhonglei ;
Guo, Yongqiang ;
Gu, Junwei .
NANO-MICRO LETTERS, 2021, 13 (01)