Additive manufacturing-induced anisotropy in damping performance of a dual-phase high-entropy alloy

被引:3
|
作者
Li, Yadong [1 ,3 ]
Bai, Yunjian [1 ,3 ]
Liu, Zishang [1 ,3 ]
Jiang, Quanyu [1 ,3 ]
Zhang, Kun [1 ,2 ,3 ]
Wei, Bingchen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Mech, Key Lab Micrograv, Natl Micrograv Lab, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive manufacturing; High-entropy alloy; Dual-phase; Damping mechanism; Anisotropy; MECHANICAL-PROPERTIES; INTERNAL-FRICTION; MICROSTRUCTURE; CAPACITY; BEHAVIOR; DEPENDENCE; PROPERTY; POWDER; STRAIN; RUBBER;
D O I
10.1016/j.jmrt.2024.02.203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (AM) can endow materials with specific microstructures, inducing anisotropy. In this study, we employed the AM technique to fabricate a dual-phase high-entropy alloy (HEA) and evaluated the damping properties of this alloy cut parallel and perpendicular to the building direction (denoted as BD and TD, respectively) while considering strain amplitude and temperature. Results reveal the presence of two distinct damping peaks as temperature increases. At low temperatures, the damping behavior is primarily controlled by dislocation movements. At moderate and high temperatures, damping performance is governed by phase transformation and grain boundary sliding. The maximum difference of damping capacity between BD and TD samples reached 247.8%. This variation can be attributed to the introduction of columnar grain microstructures along the BD by AM, increasing the average distances for dislocation movement. In addition, the intensification of phase transformation and grain boundary sliding results from more vigorous dislocation movement in BD samples, with rising temperatures, contributing to superior damping performance. Moreover, a model was developed to illustrate the temperature-dependent variations in the damping performance of this dual-phase HEA. This model elucidates the damping mechanisms within different temperature ranges and the origin of damping anisotropy. The insights derived from this study bear significance for the design of innovative HEAs, which can broaden their applications.
引用
收藏
页码:5752 / 5764
页数:13
相关论文
共 50 条
  • [21] Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy
    Dongyue Li
    Zhiming Li
    Lu Xie
    Yong Zhang
    Wenrui Wang
    Nano Research, 2022, 15 : 4859 - 4866
  • [22] On cyclic plasticity of nanostructured dual-phase CoCrFeNiAl high-entropy alloy: An atomistic study
    Zhao, Ziyu
    Liu, Jinxing
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (16)
  • [23] A precipitation-strengthened high-entropy alloy for additive manufacturing
    Zhou, Kexuan
    Wang, Zhijun
    He, Feng
    Liu, Shaofei
    Li, Junjie
    Kai, Ji-jung
    Wang, Jincheng
    ADDITIVE MANUFACTURING, 2020, 35
  • [24] Revealing cracking behavior of phase and grain boundaries in dual-phase high-entropy alloy at elevated temperatures
    Liu, Linxiang
    Wu, Qingfeng
    Zhu, Jiaxi
    Bai, Xiaoyu
    Jia, Yuhao
    He, Feng
    Li, Junjie
    Wang, Jincheng
    Wang, Zhijun
    MATERIALS CHARACTERIZATION, 2025, 220
  • [25] Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness
    Song, RuoKang
    Wei, LiJun
    Yang, ChenXi
    Wu, SuJun
    Journal of Alloys and Compounds, 2018, 744 : 552 - 560
  • [26] Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness
    Song, RuoKang
    Wei, LiJun
    Yang, ChenXi
    Wu, SuJun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 744 : 552 - 560
  • [27] Mechanical properties of dual-phase eutectic high-entropy alloys
    Nguyen, Duy-Khanh
    Fang, Te-Hua
    Huang, Ching-Chien
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 276
  • [28] Dual-phase high-entropy ultra-high temperature ceramics
    Qin, Mingde
    Gild, Joshua
    Hu, Chongze
    Wang, Haoren
    Hoque, Md Shafkat Bin
    Braun, Jeffrey L.
    Harrington, Tyler J.
    Hopkins, Patrick E.
    Vecchio, Kenneth S.
    Luo, Jian
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (15) : 5037 - 5050
  • [29] Solid-particle erosion of a dual-phase AlCoFeNi2 high-entropy alloy
    Wang, Wandong
    Hach, Michel J. R.
    Cheng, Changjun
    Lyu, Tianyi
    Liu, Zhiying
    Papini, Marcello
    Zou, Yu
    WEAR, 2023, 528
  • [30] Microstructure and deformation mechanism of dual-phase Al0.5CoCrNiFe high-entropy alloy
    Tong, Yong-Gang
    Tian, Nan
    Huang, Hong-Feng
    Zhang, Zhi-Bin
    Liang, Xiu-Bing
    Ji, Xi-Xi
    Fang, Jing-Zhong
    Hu, Yong-Le
    RARE METALS, 2023, 42 (06) : 2020 - 2027