AN INEXACT NONMONOTONE PROJECTED GRADIENT METHOD FOR CONSTRAINED MULTIOBJECTIVE OPTIMIZATION
被引:3
作者:
Zhao, Xiaopeng
论文数: 0引用数: 0
h-index: 0
机构:
Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R ChinaTiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
Zhao, Xiaopeng
[1
]
Zhang, Huijie
论文数: 0引用数: 0
h-index: 0
机构:
Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R ChinaTiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
Zhang, Huijie
[1
]
Yao, Yonghong
论文数: 0引用数: 0
h-index: 0
机构:
Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
Kyung Hee Univ, Ctr Adv Informat Technol, Seoul 02447, South KoreaTiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
Yao, Yonghong
[1
,2
]
机构:
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Kyung Hee Univ, Ctr Adv Informat Technol, Seoul 02447, South Korea
来源:
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS
|
2024年
/
8卷
/
04期
关键词:
Gradient method;
Multiobjective optimization;
Nonmonotone line search;
Pareto optimality;
STEEPEST DESCENT METHOD;
LINE SEARCH TECHNIQUE;
VECTOR OPTIMIZATION;
CONVERGENCE;
ALGORITHMS;
D O I:
10.23952/jnva.8.2024.4.03
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider an inexact projected gradient method equipped with a nonmonotone line search rule for smooth constrained multiobjective optimization. In this method, a new nonmonotone line search technique proposed here is employed and the relative errors on the search direction is admitted. We demonstrate that this method is well-defined. Then, we prove that each accumulation point of the sequence generated by this method is Pareto stationary and analyze the convergence rate of the algorithm. When the objective function is convex, the convergence of the sequence to a weak Pareto optimal point of the problem is established.