AN INEXACT NONMONOTONE PROJECTED GRADIENT METHOD FOR CONSTRAINED MULTIOBJECTIVE OPTIMIZATION

被引:3
作者
Zhao, Xiaopeng [1 ]
Zhang, Huijie [1 ]
Yao, Yonghong [1 ,2 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Kyung Hee Univ, Ctr Adv Informat Technol, Seoul 02447, South Korea
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2024年 / 8卷 / 04期
关键词
Gradient method; Multiobjective optimization; Nonmonotone line search; Pareto optimality; STEEPEST DESCENT METHOD; LINE SEARCH TECHNIQUE; VECTOR OPTIMIZATION; CONVERGENCE; ALGORITHMS;
D O I
10.23952/jnva.8.2024.4.03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an inexact projected gradient method equipped with a nonmonotone line search rule for smooth constrained multiobjective optimization. In this method, a new nonmonotone line search technique proposed here is employed and the relative errors on the search direction is admitted. We demonstrate that this method is well-defined. Then, we prove that each accumulation point of the sequence generated by this method is Pareto stationary and analyze the convergence rate of the algorithm. When the objective function is convex, the convergence of the sequence to a weak Pareto optimal point of the problem is established.
引用
收藏
页码:517 / 531
页数:15
相关论文
共 33 条
[1]   On the projected subgradient method for nonsmooth convex optimization in a Hilbert space [J].
Alber, YI ;
Iusem, AN ;
Solodov, MV .
MATHEMATICAL PROGRAMMING, 1998, 81 (01) :23-35
[3]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[4]   Convergence of the projected gradient method for quasiconvex multiobjective optimization [J].
Bello Cruz, J. Y. ;
Lucambio Perez, L. R. ;
Melo, J. G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5268-5273
[5]   THE PROXIMAL POINT METHOD FOR LOCALLY LIPSCHITZ FUNCTIONS IN MULTIOBJECTIVE OPTIMIZATION WITH APPLICATION TO THE COMPROMISE PROBLEM [J].
Bento, G. C. ;
Cruz Neto, J. X. ;
Lopez, G. ;
Soubeyran, A. ;
Souza, J. C. O. .
SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) :1104-1120
[6]   The self regulation problem as an inexact steepest descent method for multicriteria optimization [J].
Bento, G. C. ;
Cruz Neto, J. X. ;
Oliveira, P. R. ;
Soubeyran, A. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 235 (03) :494-502
[7]   A relaxed projection method for solving multiobjective optimization problems [J].
Brito, A. S. ;
Cruz Neto, J. X. ;
Santos, P. S. M. ;
Souza, S. S. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 256 (01) :17-23
[8]  
Burachik R., 1995, OPTIMIZATION, P137, DOI [10.1080/02331939508844042, DOI 10.1080/02331939508844042]
[9]   On the choice of parameters for the weighting method in vector optimization [J].
Drummond, L. M. Grana ;
Maculan, N. ;
Svaiter, B. F. .
MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) :201-216
[10]   A steepest descent method for vector optimization [J].
Drummond, LMG ;
Svaiter, BF .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (02) :395-414