Adaptive Prediction Interval for Data Stream Regression

被引:0
|
作者
Sun, Yibin [1 ]
Pfahringer, Bernhard [1 ]
Gomes, Heitor Murilo [1 ,2 ]
Bifet, Albert [1 ,3 ]
机构
[1] Univ Waikato, AI Inst, Hamilton, New Zealand
[2] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand
[3] IP Paris, Telecom Paris, LTCI, Paris, France
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT III, PAKDD 2024 | 2024年 / 14647卷
关键词
Data streams; Regression; Prediction Intervals;
D O I
10.1007/978-981-97-2259-4_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction Interval (PI) is a powerful technique for quantifying the uncertainty of regression tasks. However, research on PI for data streams has not received much attention. Moreover, traditional PI-generating approaches are not directly applicable due to the dynamic and evolving nature of data streams. This paper presents AdaPI (ADAptive Prediction Interval), a novel method that can automatically adjust the interval width by an appropriate amount according to historical information to converge the coverage to a user-defined percentage. AdaPI can be applied to any streaming PI technique as a postprocessing step. This paper develops an incremental variant of the pervasive Mean and Variance Estimation (MVE) method for use with AdaPI. An empirical evaluation over a set of standard streaming regression tasks demonstrates AdaPI's ability to generate compact prediction intervals with a coverage close to the desired level, outperforming alternative methods.
引用
收藏
页码:130 / 141
页数:12
相关论文
共 50 条
  • [1] Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction
    Maciel, Leandro
    Ballini, Rosangela
    Gomide, Fernando
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10) : 7149 - 7159
  • [2] On Ensemble Techniques for Data Stream Regression
    Gomes, Heitor Murilo
    Montiel, Jacob
    Mastelini, Saulo Martiello
    Pfahringer, Bernhard
    Bifet, Albert
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] Adaptive Interval Fuzzy Modeling from Stream Data and Application in Cryptocurrencies Forecasting
    Maciel, Leandro
    Ballini, Rosangela
    Gomide, Fernando
    FUZZY INFORMATION PROCESSING 2020, 2022, 1337 : 69 - 81
  • [4] OPOSSAM: Online Prediction of Stream Data Using Self-adaptive Memory
    Yamaguchi, Akihiro
    Maya, Shigeru
    Inagi, Tatsuya
    Ueno, Ken
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2355 - 2364
  • [5] Rival Learner Algorithm with Drift Adaptation for Online Data Stream Regression
    Liao, Zhenwei
    Wang, Yongheng
    2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018), 2018,
  • [6] Regression trees for fast and adaptive prediction intervals
    Cabezas, Luben M. C.
    Otto, Mateus P.
    Izbicki, Rafael
    Stern, Rafael B.
    INFORMATION SCIENCES, 2025, 686
  • [7] Narrow big data in a stream: Computational limitations and regression
    Cerny, Michal
    INFORMATION SCIENCES, 2019, 486 : 379 - 392
  • [8] Vertical and Horizontal Partitioning in Data Stream Regression Ensembles
    Barddal, Jean Paul
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [9] Multi-output regression for imbalanced data stream
    Peng, Tao
    Sellami, Sana
    Boucelma, Omar
    Chbeir, Richard
    EXPERT SYSTEMS, 2023, 40 (10)
  • [10] Regression applied to symbolic interval-spatial data
    Freitas, Wanessa W. L.
    de Souza, Renata M. C. R.
    Amaral, Getulio J. A.
    de Moraes, Ronei M.
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1545 - 1565