A Spatiotemporal Deep Learning Framework for Scalp EEG-Based Automated Pain Assessment in Children

被引:5
作者
Fu, Zanhao [1 ]
Zhu, Huaiyu [2 ]
Zhang, Yi [2 ]
Huan, Ruohong [3 ]
Chen, Shuohui [4 ]
Pan, Yun [5 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Peoples R China
[2] Zhejiang Univ, Childrens Hosp, Dept Neurol, Sch Med, Hangzhou, Peoples R China
[3] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[4] Zhejiang Univ, Childrens Hosp, Nursing Dept, Sch Med, Hangzhou, Peoples R China
[5] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Pain; Pediatrics; Electroencephalography; Electrodes; Scalp; Deep learning; Spatiotemporal phenomena; Automated pain assessment; EEG; transformer; attention mechanism; convolutional neural network; CONVOLUTIONAL NEURAL-NETWORKS; REPRESENTATION; INTENSITY; INFANTS; SIGNALS; FUSION; GENDER;
D O I
10.1109/TBME.2024.3355215
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Common pain assessment approaches such as self-evaluation and observation scales are inappropriate for children as they require patients to have reasonable communication ability. Subjective, inconsistent, and discontinuous pain assessment in children may reduce therapeutic effectiveness and thus affect their later life. Methods: To address the need for suitable assessment measures, this paper proposes a spatiotemporal deep learning framework for scalp electroencephalogram (EEG)-based automated pain assessment in children. The dataset comprises scalp EEG data recorded from 33 pediatric patients with an arterial puncture as a pain stimulus. Two electrode reduction plans in line with clinical findings are proposed. Combining three-dimensional hand-crafted features and preprocessed raw signals, the proposed transformer-based pain assessment network (STPA-Net) integrates both spatial and temporal information. Results: STPA-Net achieves superior performance with a subject-independent accuracy of 87.83% for pain recognition, and outperforms other state-of-the-art approaches. The effectiveness of electrode combinations is explored to analyze pain-related cortical activities and correspondingly reduce cost. The two proposed electrode reduction plans both demonstrate competitive pain assessment performance qualitatively and quantitatively. Conclusion and significance: This study is the first to develop a scalp EEG-based automated pain assessment for children adopting a method that is objective, standardized, and consistent. The findings provide a potential reference for future clinical research.
引用
收藏
页码:1889 / 1900
页数:12
相关论文
共 60 条
[1]   Frontal Lobe Hemodynamic Responses to Painful Stimulation: A Potential Brain Marker of Nociception [J].
Aasted, Christopher M. ;
Yucel, Meryem A. ;
Steele, Sarah C. ;
Peng, Ke ;
Boas, David A. ;
Becerra, Lino ;
Borsook, David .
PLOS ONE, 2016, 11 (11)
[2]   EEG-based tonic cold pain recognition system using wavelet transform [J].
Alazrai, Rami ;
Momani, Mohammad ;
Abu Khudair, Hussein ;
Daoud, Mohammad, I .
NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07) :3187-3200
[3]   Decoding Eye Blink and Related EEG Activity in Realistic Working Environments [J].
Alyan, Emad ;
Arnau, Stefan ;
Reiser, Julian Elias ;
Getzmann, Stephan ;
Karthaus, Melanie ;
Wascher, Edmund .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (12) :5745-5754
[4]   Developmental character and long-term consequences of pain in infants and children [J].
Anand, KS ;
Grunau, RE ;
Oberlander, TF .
CHILD AND ADOLESCENT PSYCHIATRIC CLINICS OF NORTH AMERICA, 1997, 6 (04) :703-+
[5]   Pain activates cortical areas in the preterm newborn brain [J].
Bartocci, M ;
Bergqvist, LL ;
Lagercrantz, H ;
Anand, KJS .
PAIN, 2006, 122 (1-2) :109-117
[6]   Brain charts for the human lifespan [J].
Bethlehem, R. A. I. ;
Seidlitz, J. ;
White, S. R. ;
Vogel, J. W. ;
Anderson, K. M. ;
Adamson, C. ;
Adler, S. ;
Alexopoulos, G. S. ;
Anagnostou, E. ;
Areces-Gonzalez, A. ;
Astle, D. E. ;
Auyeung, B. ;
Ayub, M. ;
Bae, J. ;
Ball, G. ;
Baron-Cohen, S. ;
Beare, R. ;
Bedford, S. A. ;
Benegal, V. ;
Beyer, F. ;
Blangero, J. ;
Blesa Cabez, M. ;
Boardman, J. P. ;
Borzage, M. ;
Bosch-Bayard, J. F. ;
Bourke, N. ;
Calhoun, V. D. ;
Chakravarty, M. M. ;
Chen, C. ;
Chertavian, C. ;
Chetelat, G. ;
Chong, Y. S. ;
Cole, J. H. ;
Corvin, A. ;
Costantino, M. ;
Courchesne, E. ;
Crivello, F. ;
Cropley, V. L. ;
Crosbie, J. ;
Crossley, N. ;
Delarue, M. ;
Delorme, R. ;
Desrivieres, S. ;
Devenyi, G. A. ;
Di Biase, M. A. ;
Dolan, R. ;
Donald, K. A. ;
Donohoe, G. ;
Dunlop, K. ;
Edwards, A. D. .
NATURE, 2022, 604 (7906) :525-+
[7]   Scalp EEG-Based Pain Detection Using Convolutional Neural Network [J].
Chen, Duo ;
Zhang, Haihong ;
Kavitha, Perumpadappil Thomas ;
Loy, Fong Ling ;
Ng, Soon Huat ;
Wang, Chuanchu ;
Phua, Kok Soon ;
Tjan, Soon Yin ;
Yang, Su-Yin ;
Guan, Cuntai .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 :274-285
[8]  
Garcia-Larrea Luis, 2018, Handb Clin Neurol, V151, P207, DOI 10.1016/B978-0-444-63622-5.00010-3
[9]   SViT: A Spectral Vision Transformer for the Detection of REM Sleep Behavior Disorder [J].
Gunter, Katarina Mary ;
Brink-Kjaer, Andreas ;
Mignot, Emmanuel ;
Sorensen, Helge B. D. ;
During, Emmanuel ;
Jennum, Poul .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (09) :4285-4292
[10]   EEG-Based Tonic Cold Pain Characterization Using Wavelet Higher Order Spectral Features [J].
Hadjileontiadis, Leontios J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (08) :1981-1991