Enhancing neuro-oncology care through equity-driven applications of artificial intelligence

被引:3
作者
Mehari, Mulki [1 ]
Sibih, Youssef [1 ]
Dada, Abraham [1 ]
Chang, Susan M. [2 ,3 ]
Wen, Patrick Y. [4 ]
Molinaro, Annette M. [1 ]
Chukwueke, Ugonma N. [4 ]
Budhu, Joshua A. [5 ]
Jackson, Sadhana [6 ]
McFaline-Figueroa, J. Ricardo [4 ]
Porter, Alyx
Hervey-Jumper, Shawn L. [1 ,7 ]
机构
[1] Univ Calif San Francisco, Dept Neurosurg, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Div Neurooncol, San Francisco, CA USA
[3] Weill Inst Neurosci, San Francisco, CA USA
[4] Harvard Med Sch, Dana Farber Canc Inst, Ctr Neurooncol, Dept Med Oncol, Boston, MA USA
[5] Cornell Univ, Joan & Sanford I Weill Med Coll, Weill Cornell Med, Dept Neurol,Mem Sloan Kettering Canc Ctr,Dept Neur, New York, NY USA
[6] NINDS, Surg Neurol Branch, Pediat Oncol Branch, NCI,NIH, Bethesda, MD USA
[7] Mayo Clin, Dept Neurol, Div Neurooncol, Phoenix, AZ USA
关键词
artificial intelligence; health disparities; health equity; machine learning; neuro-oncology; DISPARITIES; HEALTH; DIVERSITY; ALGORITHM; PATTERNS; MEDICINE; ACCESS; CANCER; LEVEL; RISK;
D O I
10.1093/neuonc/noae127
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The disease course and clinical outcome for brain tumor patients depend not only on the molecular and histological features of the tumor but also on the patient's demographics and social determinants of health. While current investigations in neuro-oncology have broadly utilized artificial intelligence (AI) to enrich tumor diagnosis and more accurately predict treatment response, postoperative complications, and survival, equity-driven applications of AI have been limited. However, AI applications to advance health equity in the broader medical field have the potential to serve as practical blueprints to address known disparities in neuro-oncologic care. In this consensus review, we will describe current applications of AI in neuro-oncology, postulate viable AI solutions for the most pressing inequities in neuro-oncology based on broader literature, propose a framework for the effective integration of equity into AI-based neuro-oncology research, and close with the limitations of AI.
引用
收藏
页码:1951 / 1963
页数:13
相关论文
共 98 条
[1]   Artificial intelligence in medical referrals triage based on Clinical Prioritization Criteria [J].
Abdel-Hafez, Ahmad ;
Jones, Melanie ;
Ebrahimabadi, Maziiar ;
Ryan, Cathi ;
Graham, Steve ;
Slee, Nicola ;
Whitfield, Bernard .
FRONTIERS IN DIGITAL HEALTH, 2023, 5
[2]   Considerations for addressing bias in artificial intelligence for health equity [J].
Abramoff, Michael D. ;
Tarver, Michelle E. ;
Loyo-Berrios, Nilsa ;
Trujillo, Sylvia ;
Char, Danton ;
Obermeyer, Ziad ;
Eydelman, Malvina B. ;
Maisel, William H. .
NPJ DIGITAL MEDICINE, 2023, 6 (01)
[3]   Subpopulation-specific machine learning prognosis for underrepresented patients with double prioritized bias correction [J].
Afrose, Sharmin ;
Song, Wenjia ;
Nemeroff, Charles B. ;
Lu, Chang ;
Yao, Danfeng .
COMMUNICATIONS MEDICINE, 2022, 2 (01)
[4]   Addressing Barriers to Clinical Trial Participation for Transgender People With Cancer to Improve Access and Generate Data [J].
Alpert, Ash B. ;
Brewer, Jamie Renee ;
Adams, Spencer ;
Rivers, Lexis ;
Orta, Sunshine ;
Blosnich, John R. ;
Miedlich, Susanne ;
Kamen, Charles ;
Dizon, Don S. ;
Pazdur, Richard ;
Beaver, Julia A. ;
Fashoyin-Aje, Lola .
JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (10) :1825-+
[5]   Data sharing in the age of deep learning [J].
不详 .
NATURE BIOTECHNOLOGY, 2023, 41 (04) :433-433
[6]   Guiding principles for the responsible development of artificial intelligence tools for healthcare [J].
Badal, Kimberly ;
Lee, Carmen M. ;
Esserman, Laura J. .
COMMUNICATIONS MEDICINE, 2023, 3 (01)
[7]   Is AI leading to a reproducibility crisis in science? [J].
Ball, Philip .
NATURE, 2023, 624 (7990) :22-25
[8]   Racial Equity in Healthcare Machine Learning: Illustrating Bias in Models With Minimal Bias Mitigation [J].
Barton, Michael ;
Hamza, Mahmoud ;
Guevel, Borna .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (02)
[9]   The Use of Natural Language Processing to Assess Social Support in Patients With Advanced Cancer [J].
Bhatt, Sunil ;
Johnson, P. Connor ;
Markovitz, Netana H. ;
Gray, Tamryn ;
Nipp, Ryan D. ;
Ufere, Nneka ;
Rice, Julia ;
Reynolds, Matthew J. ;
Lavoie, Mitchell W. ;
Clay, Madison A. ;
Lindvall, Charlotta ;
El-Jawahri, Areej .
ONCOLOGIST, 2023, 28 (02) :165-171
[10]  
Binkley Charles E, 2022, AMA J Ethics, V24, pE773, DOI 10.1001/amajethics.2022.773