Greedy inference with structure-exploiting lazy maps

被引:0
|
作者
Brennan, Michael C. [1 ]
Bigoni, Daniele [1 ]
Zahm, Olivier [2 ]
Spantini, Alessio [1 ]
Marzouk, Youssef [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Univ Grenoble Alpes, INRIA, CNRS, LJK, F-38000 Grenoble, France
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
关键词
MCMC; ALGORITHMS; QUADRATURE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a framework for solving high-dimensional Bayesian inference problems using structure-exploiting low-dimensional transport maps or flows. These maps are confined to a low-dimensional subspace (hence, lazy), and the subspace is identified by minimizing an upper bound on the Kullback-Leibler divergence (hence, structured). Our framework provides a principled way of identifying and exploiting low-dimensional structure in an inference problem. It focuses the expressiveness of a transport map along the directions of most significant discrepancy from the posterior, and can be used to build deep compositions of lazy maps, where low-dimensional projections of the parameters are iteratively transformed to match the posterior. We prove weak convergence of the generated sequence of distributions to the posterior, and we demonstrate the benefits of the framework on challenging inference problems in machine learning and differential equations, using inverse autoregressive flows and polynomial maps as examples of the underlying density estimators.
引用
收藏
页数:13
相关论文
共 36 条
  • [1] A Multiscale Strategy for Bayesian Inference Using Transport Maps
    Parno, Matthew
    Moselhy, Tarek
    Marzouk, Youssef
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 1160 - 1190
  • [2] Exploiting the Structure of Unsatisfiable Cores in MaxSAT
    Ansotegui, Carlos
    Didier, Frederic
    Gabas, Joel
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 283 - 289
  • [3] Exploiting Structure in the Bottleneck Assignment Problem
    Khoo, Mitchell
    Wood, Tony A.
    Manzie, Chris
    Shames, Iman
    IFAC PAPERSONLINE, 2020, 53 (02): : 3310 - 3315
  • [4] Exploiting structure in symmetry detection for CNF
    Darga, PT
    Liffiton, MH
    Sakallah, KA
    Markov, IL
    41ST DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2004, 2004, : 530 - 534
  • [5] Exploiting Problem Structure in Derivative Free Optimization
    Porcelli, Margherita
    Toint, Philippe L.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2022, 48 (01):
  • [6] Exploiting hierarchical domain structure to compute similarity
    Ganesan, P
    Garcia-Molina, H
    Widom, J
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2003, 21 (01) : 64 - 93
  • [7] Exploiting distinctive visual landmark maps in pan-tilt-zoom camera networks
    Del Bimbo, A.
    Dini, F.
    Lisanti, G.
    Pernici, F.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2010, 114 (06) : 611 - 623
  • [8] Exploiting Experts' Knowledge for Structure Learning of Bayesian Networks
    Amirkhani, Hossein
    Rahmati, Mohammad
    Lucas, Peter J. F.
    Hommersom, Arjen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (11) : 2154 - 2170
  • [9] Human Inference in Changing Environments With Temporal Structure
    Prat-Carrabin, Arthur
    Wilson, Robert C.
    Cohen, Jonathan D.
    da Silveira, Rava Azeredo
    PSYCHOLOGICAL REVIEW, 2021, 128 (05) : 879 - 912
  • [10] Music Structure Analysis Using a Probabilistic Fitness Measure and a Greedy Search Algorithm
    Paulus, Jouni
    Klapuri, Anssi
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2009, 17 (06): : 1159 - 1170