Keck Primary Mirror Closed-loop Segment Control Using a Vector-Zernike Wavefront Sensor

被引:7
|
作者
Salama, Maissa [1 ]
Guthery, Charlotte [2 ]
Chambouleyron, Vincent [1 ]
Jensen-Clem, Rebecca [1 ]
Wallace, J. Kent [3 ]
Delorme, Jacques-Robert [2 ]
Troy, Mitchell [3 ]
Wenger, Tobias [3 ]
Echeverri, Daniel [4 ]
Finnerty, Luke [5 ]
Jovanovic, Nemanja [4 ]
Liberman, Joshua [4 ,6 ]
Lopez, Ronald A. [7 ]
Mawet, Dimitri [4 ]
Morris, Evan C. [1 ]
van Kooten, Maaike [8 ]
Wang, Jason J. [9 ,10 ]
Wizinowich, Peter [2 ]
Xin, Yinzi [4 ]
Xuan, Jerry [4 ]
机构
[1] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA
[2] W M Keck Observ, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 USA
[3] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[4] CALTECH, Dept Astron, Pasadena, CA 91125 USA
[5] Univ Calif Los Angeles, Dept Phys & Astron, 430 Portola Plaza, Los Angeles, CA 90095 USA
[6] Univ Arizona, James C Wyant Coll Opt Sci, Meinel Bldg,1630 E Univ Blvd, Tucson, AZ 85721 USA
[7] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[8] Herzberg Astron & Astrophys, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada
[9] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys CIE, Evanston, IL 60208 USA
[10] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
来源
ASTROPHYSICAL JOURNAL | 2024年 / 967卷 / 02期
关键词
DIRECT-IMAGING INSTRUMENTS; QUASI-STATIC ABERRATIONS; ADAPTIVE OPTICS; PHASE; PERFORMANCE; CALIBRATION; TELESCOPE;
D O I
10.3847/1538-4357/ad3b99
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first on-sky segmented primary mirror closed-loop piston control using a Zernike wavefront sensor (ZWFS) installed on the Keck II telescope. Segment cophasing errors are a primary contributor to contrast limits on Keck and will be necessary to correct for the next generation of space missions and ground-based extremely large telescopes, which will all have segmented primary mirrors. The goal of the ZWFS installed on Keck is to monitor and correct primary mirror cophasing errors in parallel with science observations. The ZWFS is ideal for measuring phase discontinuities such as segment cophasing errors and is one of the most sensitive WFSs, but has limited dynamic range. The vector-ZWFS at Keck works on the adaptive-optics-corrected wavefront and consists of a metasurface focal plane mask that imposes two different phase shifts on the core of the point-spread function to two orthogonal light polarizations, producing two pupil images. This design extends the dynamic range compared with the scalar ZWFS. The primary mirror segment pistons were controlled in closed loop using the ZWFS, improving the Strehl ratio on the NIRC2 science camera by up to 10 percentage points. We analyze the performance of the closed-loop tests, the impact on NIRC2 science data, and discuss the ZWFS measurements.
引用
收藏
页数:13
相关论文
共 32 条
  • [21] Characterization and closed-loop demonstration novel electro-static membrane mirror using COTS membranes
    Dayton, David C.
    Mansell, Justin
    Gonglewski, John D.
    Amauld, Chad St.
    ADVANCED WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS V, 2007, 6711
  • [22] Predictability of fractional-Brownian-motion wavefront distortions and some implications for closed-loop adaptive optics control.
    Aitken, GJM
    Rossille, D
    McGaughey, DR
    ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES, PARTS 1 AND 2, 1998, 3353 : 1060 - 1069
  • [23] Surface figure prediction and closed-loop control for novel unimorph deformable mirror integrated strain feedback layer
    Fan Z.
    Dai Y.
    Guan C.
    Tie G.
    Qi C.
    Guan, Chaoliang (chlguan@nudt.edu.cn), 2018, Science Press (39): : 34 - 40
  • [24] Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback
    Dosen, Strahinja
    Schaeffer, Marie-Caroline
    Farina, Dario
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2014, 11
  • [25] Human stochastic closed-loop behavior for master-slave teleoperation using multi-leap-motion sensor
    Hu, TianJian
    Zhu, XiaoJun
    Wang, XueQian
    Wang, TianShu
    Li, JunFeng
    Qian, WeiPing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2017, 60 (03) : 374 - 384
  • [26] Picometre-level surface control of a closed-loop, adaptive X-ray mirror with integrated real-time interferometric feedback
    Nistea, Ioana-Theodora
    Alcock, Simon G.
    Foster, Andrew
    Badami, Vivek
    Signorato, Riccardo
    Fusco, Matteo
    JOURNAL OF SYNCHROTRON RADIATION, 2025, 32 : 133 - 144
  • [27] Small fault detection from discrete-time closed-loop control using fault dynamics residuals
    Zhang, Jingting
    Yuan, Chengzhi
    Stegagno, Paolo
    Zeng, Wei
    Wang, Cong
    NEUROCOMPUTING, 2019, 365 : 239 - 248
  • [28] Closed-loop Flow Control Method Based on Deep Reinforcement Learning using a Co-flow Jet
    Zhao, Y. R.
    Xu, H. Y.
    Xie, Z. Y.
    JOURNAL OF APPLIED FLUID MECHANICS, 2024, 17 (04) : 816 - 827
  • [29] Low-order wavefront control using a Zernike sensor through Lyot coronagraphs for exoplanet imaging Blind stabilization of an image dark hole
    Pourcelot, R.
    N'Diaye, M.
    Por, E. H.
    Laginja, I
    Carbillet, M.
    Benard, H.
    Brady, G.
    Canas, L.
    Dohlen, K.
    Fowler, J.
    Lai, O.
    Maclay, M.
    McChesney, E.
    Noss, J.
    Perrin, M. D.
    Petrone, P.
    Pueyo, L.
    Redmond, S. F.
    Sahoo, A.
    Vigan, A.
    Will, S. D.
    Soummer, R.
    ASTRONOMY & ASTROPHYSICS, 2022, 663
  • [30] Experimental study of the combustion characteristics prediction model for a sensor-less closed-loop control in a heavy-duty NG engine
    Yin, Xiaojun
    Li, Zhijie
    Yang, Bo
    Sun, Ting
    Wang, Ying
    Zeng, Ke
    FUEL, 2021, 300