Quantum Hall criticality in an amorphous Chern insulator

被引:2
作者
Bera, Soumya [1 ]
Dieplinger, Johannes [2 ]
Nayak, Naba P. [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, India
[2] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
关键词
CONDUCTANCE; TRANSITION; FLUCTUATIONS; REALIZATION;
D O I
10.1103/PhysRevB.109.174213
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We explore the critical properties of a topological transition in a two-dimensional, amorphous lattice with randomly distributed points. The model intrinsically breaks the time-reversal symmetry without an external magnetic field, akin to a Chern insulator. Here, the topological transition is induced by varying the density of lattice points or adjusting the mass parameter. Using the two-terminal conductance and multifractality of the wave function, we found that the topological transition belongs to the same universality class as the integer quantum Hall transition. Regardless of the approach to the critical point across the phase boundary, the localization length exponent remains within v ti 2.55-2.61. The irrelevant scaling exponent for both the observables is y ti 0.3(1), comparable to the values obtained using transfer matrix analysis in the Chalker-Coddigton network. Additionally, the investigation of the entire distribution function of the inverse participation ratio at the critical point shows possible deviations from the parabolic multifractal spectrum at the anomalous quantum Hall transition.
引用
收藏
页数:14
相关论文
共 92 条
[1]   Higher-order topological insulators in amorphous solids [J].
Agarwala, Adhip ;
Juricic, Vladimir ;
Roy, Bitan .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[2]   Topological Insulators in Amorphous Systems [J].
Agarwala, Adhip ;
Shenoy, Vijay B. .
PHYSICAL REVIEW LETTERS, 2017, 118 (23)
[3]   Fragility of Surface States in Non-Wigner-Dyson Topological Insulators [J].
Altland, Alexander ;
Brouwer, Piet W. ;
Dieplinger, Johannes ;
Foster, Matthew S. ;
Moreno-Gonzalez, Mateo ;
Trifunovic, Luka .
PHYSICAL REVIEW X, 2024, 14 (01)
[4]   Numerical Study of the Localization Length Critical Index in a Network Model of Plateau-Plateau Transitions in the Quantum Hall Effect [J].
Amado, M. ;
Malyshev, A. V. ;
Sedrakyan, A. ;
Dominguez-Adame, F. .
PHYSICAL REVIEW LETTERS, 2011, 107 (06)
[5]   Multifractal Conductance Fluctuations in High-Mobility Graphene in the Integer Quantum Hall Regime [J].
Amin, Kazi Rafsanjani ;
Nagarajan, Ramya ;
Pandit, Rahul ;
Bid, Aveek .
PHYSICAL REVIEW LETTERS, 2022, 129 (18)
[6]   THE ANDERSON-MOTT TRANSITION [J].
BELITZ, D ;
KIRKPATRICK, TR .
REVIEWS OF MODERN PHYSICS, 1994, 66 (02) :261-390
[7]   Towards a field theory of the plateau transitions in the integer quantum Hall effect [J].
Bhaseen, MJ ;
Kogan, II ;
Soloviev, OA ;
Taniguchi, N ;
Tsvelik, AM .
NUCLEAR PHYSICS B, 2000, 580 (03) :688-720
[8]   Gaussian free fields at the integer quantum Hall plateau transition [J].
Bondesan, R. ;
Wieczorek, D. ;
Zirnbauer, M. R. .
NUCLEAR PHYSICS B, 2017, 918 :52-90
[9]   Wave function multifractality and dephasing at metal-insulator and quantum Hall transitions [J].
Burmistrov, I. S. ;
Bera, S. ;
Evers, F. ;
Gornyi, I. V. ;
Mirlin, A. D. .
ANNALS OF PHYSICS, 2011, 326 (06) :1457-1478
[10]   PERCOLATION, QUANTUM TUNNELLING AND THE INTEGER HALL-EFFECT [J].
CHALKER, JT ;
CODDINGTON, PD .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (14) :2665-2679