Smoothed Online Combinatorial Optimization Using Imperfect Predictions

被引:0
作者
Wang, Kai [1 ,2 ]
Song, Zhao [2 ]
Theocharous, Georgios [2 ]
Mahadevan, Sridhar [2 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] Adobe Res, San Jose, CA USA
来源
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10 | 2023年
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Smoothed online combinatorial optimization considers a learner who repeatedly chooses a combinatorial decision to minimize an unknown changing cost function with a penalty on switching decisions in consecutive rounds. We study smoothed online combinatorial optimization problems when an imperfect predictive model is available, where the model can forecast the future cost functions with uncertainty. We show that using predictions to plan for a finite time horizon leads to regret dependent on the total predictive uncertainty and an additional switching cost. This observation suggests choosing a suitable planning window to balance between uncertainty and switching cost, which leads to an online algorithm with guarantees on the upper and lower bounds of the cumulative regret. Empirically, our algorithm shows a significant improvement in cumulative regret compared to other baselines in synthetic online distributed streaming problems.
引用
收藏
页码:12130 / 12137
页数:8
相关论文
共 37 条
[1]  
Andrew Lachlan, 2013, Performance Evaluation Review, V41, P329
[2]  
Antoniadis Antonios, 2020, P 37 INT C MACHINE L, V119, P345
[3]   Regret in Online Combinatorial Optimization [J].
Audibert, Jean-Yves ;
Bubeck, Sebastien ;
Lugosi, Gabor .
MATHEMATICS OF OPERATIONS RESEARCH, 2014, 39 (01) :31-45
[4]  
Badici M, 2015, IEEE DECIS CONTR P, P6730, DOI 10.1109/CDC.2015.7403279
[5]   Ramsey-type theorems for metric spaces with applications to online problems [J].
Bartal, Yair ;
Bollobas, Bela ;
Mendel, Manor .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (05) :890-921
[6]  
Bartal Yair., 2003, Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, P463, DOI DOI 10.1145/780542.780610
[7]   Near-Optimal A-B Testing [J].
Bhat, Nikhil ;
Farias, Vivek F. ;
Moallemi, Ciamac C. ;
Sinha, Deeksha .
MANAGEMENT SCIENCE, 2020, 66 (10) :4477-4495
[8]  
Bubeck S., 2020, P 31 ANN ACMS S
[9]   METRICAL TASK SYSTEMS ON TREES VIA MIRROR DESCENT AND UNFAIR GLUING [J].
Bubeck, Sebastien ;
Cohen, Michael B. ;
Lee, James R. ;
Lee, Yin Tat .
SIAM JOURNAL ON COMPUTING, 2021, 50 (03) :909-923
[10]   Competitively Chasing Convex Bodies [J].
Bubeck, Sebastien ;
Lee, Yin Tat ;
Li, Yuanzhi ;
Sellke, Mark .
PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, :861-868