3-D-Printed All-Metal Conformal Circularly Polarized Reflectarray Antenna at X-Band

被引:3
作者
Wang, Yifan [1 ]
Han, Min [2 ]
Dou, Wenbin [1 ]
Li, Teng [1 ,3 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
[2] Acad Mil Sci, Inst Syst Engn, Peoples Liberat Army China, Beijing 100082, Peoples R China
[3] Purple Mt Labs, Nanjing 211111, Peoples R China
基金
中国国家自然科学基金;
关键词
Reflector antennas; Antenna arrays; Metals; Dielectrics; Horn antennas; Gain; Antenna measurements; 3-D-printing; circular polarization; conformal antenna; reflectarray; DIELECTRIC REFLECTARRAY; ONLY REFLECTARRAY; DESIGN; ELEMENT;
D O I
10.1109/TAP.2024.3387657
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a proposal for a 3-D-printed all-metal conformal circularly polarized (CP) reflectarray antenna operating in the X-band. The reflectarray element is constructed with a quasi-I-shaped arm with a pillar at the center as support. To enhance the angular stability of the reflection response for oblique incidence, 12 metal blocks are introduced around the element. In addition, a compact wideband 3-D-printed CP horn antenna is designed as the feeding source. A novel method for estimating the aperture efficiency (AE) of the conformal reflectarray is derived to determine the reflection phase distribution of the reflectarray and the position of the feeding antenna. To validate the proposed reflectarray element and approach, an all-metal $15\times15\,\,3$ -D printed conformal reflectarray is designed, fabricated, and measured. The experimental results demonstrate a 42.3% (8.2-12.6 GHz) 3-dB axial ratio (AR) bandwidth, an 11.4% (10.4-11.6 GHz) 1-dB gain bandwidth, a 27% (9.6-12.6 GHz) 3-dB gain bandwidth, and a 40.7% AE.
引用
收藏
页码:4989 / 4998
页数:10
相关论文
共 22 条
  • [1] Chen SZ, 2012, INT J COMPUT APPL T, V44, P94, DOI 10.1504/IJCAT.2012.048678
  • [2] An Efficient Surrogate Assisted Particle Swarm Optimization for Antenna Synthesis
    Fu, Kai
    Cai, Xiwen
    Yuan, Bo
    Yang, Yang
    Yao, Xin
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (07) : 4977 - 4984
  • [3] A radial basis function method for global optimization
    Gutmann, HM
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (03) : 201 - 227
  • [4] He Yi-chao, 2007, Journal of Computer Applications, V27, P630
  • [5] Feed Point Optimization of Koch-Minkowski Hybrid Boundary antenna for ISM Band
    Jain, Chahat
    Singh, Saroop
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2019, 108 (04) : 2403 - 2414
  • [6] A Multisurrogate-Assisted Optimization Framework for SSPP-Based mmWave Array Antenna
    Jiao, Yaxi
    Zhu, Qian
    Ni, Rui
    Cheng, Qingsha S.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (04) : 2938 - 2945
  • [7] Koziel S., 2018, IEEE MTT S INT MICRO, P1
  • [8] Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
    Koziel, Slawomir
    Calik, Nurullah
    Mahouti, Peyman
    Belen, Mehmet A.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (03) : 2174 - 2188
  • [9] An Efficient Method for Complex Antenna Design Based on a Self Adaptive Surrogate Model-Assisted Optimization Technique
    Liu, Bo
    Akinsolu, Mobayode O.
    Song, Chaoyun
    Hua, Qiang
    Excell, Peter
    Xu, Qian
    Huang, Yi
    Imran, Muhammad Ali
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (04) : 2302 - 2315
  • [10] Efficient global optimisation of microwave antennas based on a parallel surrogate model-assisted evolutionary algorithm
    Liu, Bo
    Akinsolu, Mobayode O.
    Ali, Nazar
    Abd-Alhameed, Raed
    [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2019, 13 (02) : 149 - 155