An FPGA-Based Reconfigurable Accelerator for Convolution-Transformer Hybrid EfficientViT

被引:0
|
作者
Shao, Haikuo [1 ]
Shil, Huihong [1 ]
Mao, Wendong [2 ]
Wang, Zhongfeng [1 ,2 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing, Peoples R China
[2] Sun Yat Sen Univ, Sch Integrated Circuits, Shenzhen, Peoples R China
基金
国家重点研发计划;
关键词
Vision Transformer; convolution; hybrid architecture; hardware accelerator; FPGA;
D O I
10.1109/ISCAS58744.2024.10557992
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Vision Transformers (ViTs) have achieved significant success in computer vision. However, their intensive computations and massive memory footprint challenge ViTs' deployment on embedded devices, calling for efficient ViTs. Among them, EfficientViT, the state-of-the-art one, features a Convolution-Transformer hybrid architecture, enhancing both accuracy and hardware efficiency. Unfortunately, existing accelerators cannot fully exploit the hardware benefits of EfficientViT due to its unique architecture. In this paper, we propose an FPGA-based accelerator for EfficientViT to advance the hardware efficiency frontier of ViTs. Specifically, we design a reconfigurable architecture to efficiently support various operation types, including lightweight convolutions and attention, boosting hardware utilization. Additionally, we present a time-multiplexed and pipelined dataflow to facilitate both intra- and inter-layer fusions, reducing off-chip data access costs. Experimental results show that our accelerator achieves up to 780.2 GOPS in throughput and 105.1 GOPS/W in energy efficiency at 200MHz on the Xilinx ZCU102 FPGA, which significantly outperforms prior works.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] An Efficient FPGA-Based Accelerator Design for Convolution
    Song, Peng-Fei
    Pan, Jeng-Shyang
    Yang, Chun-Sheng
    Lee, Chiou-Yng
    2017 IEEE 8TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2017, : 494 - 500
  • [2] An FPGA-Based Energy-Efficient Reconfigurable Depthwise Separable Convolution Accelerator for Image Recognition
    Xuan, Lei
    Un, Ka-Fai
    Lam, Chi-Seng
    Martins, Rui P.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (10) : 4003 - 4007
  • [3] A reconfigurable FPGA-based spiking neural network accelerator
    Yin, Mingqi
    Cui, Xiaole
    Wei, Feng
    Liu, Hanqing
    Jiang, Yuanyuan
    Cui, Xiaoxin
    MICROELECTRONICS JOURNAL, 2024, 152
  • [4] Reconfigurable FPGA-based hardware accelerator for embedded DSP
    Rubin, G.
    Omieljanowicz, M.
    Petrovsky, A.
    MIXDES 2007: Proceedings of the 14th International Conference on Mixed Design of Integrated Circuits and Systems:, 2007, : 147 - 151
  • [5] FPGA-Based Programmable Accelerator for Hybrid Processing
    Stefan, Gheorghe M.
    Bira, Calin
    Hobincu, Radu
    Malita, Mihaela
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2016, 19 (1-2): : 148 - 165
  • [6] Resource-Efficient Optimization for FPGA-Based Convolution Accelerator
    Ma, Yanhua
    Xu, Qican
    Song, Zerui
    ELECTRONICS, 2023, 12 (20)
  • [7] An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution
    Liu, Bing
    Zou, Danyin
    Feng, Lei
    Feng, Shou
    Fu, Ping
    Li, Junbao
    ELECTRONICS, 2019, 8 (03)
  • [8] Energy Efficient FPGA-Based Accelerator for Dynamic Sparse Transformer
    Li, Zuohao
    Lai, Yiwan
    Zhang, Hao
    2024 13TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS, ICCCAS 2024, 2024, : 7 - 12
  • [9] A High-Performance FPGA-Based Depthwise Separable Convolution Accelerator
    Huang, Jiye
    Liu, Xin
    Guo, Tongdong
    Zhao, Zhijin
    ELECTRONICS, 2023, 12 (07)
  • [10] An FPGA-based accelerator for deep neural network with novel reconfigurable architecture
    Jia, Han
    Ren, Daming
    Zou, Xuecheng
    IEICE ELECTRONICS EXPRESS, 2021, 18 (04):