Brain metastasis risk prediction model in females with hormone receptor-positive breast cancer

被引:2
|
作者
Cacho-Diaz, Bernardo [1 ]
Valdes-Ferrer, Sergio I. [2 ,3 ]
Chavez-MacGregor, Mariana [4 ,5 ]
Salmeron-Moreno, Karen [1 ]
Villarreal-Garza, Cynthia [6 ,7 ]
Reynoso-Noveron, Nancy [1 ]
机构
[1] Inst Nacl Cancerol, Av San Fernando 22,Col Secc XVI, Mexico City, Mexico
[2] Feinstein Inst Med Res, Inst Bioelect Med, Manhasset, NY USA
[3] Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Dept Neurol & Psiquiatr, Mexico City, Mexico
[4] Univ Texas MD Anderson Canc Ctr, Breast Med Oncol Dept, Houston, TX USA
[5] Univ Texas MD Anderson Canc Ctr, Hlth Serv Res Dept, Houston, TX USA
[6] Tecnol Monterrey, Hosp Zambrano Hell TecSalud, Breast Canc Ctr, San Pedro Garza Garcia, Mexico
[7] Dept Med Oncol Med & Invest Lucha Canc Mama, Mexico City, Mexico
关键词
Breast cancer; Brain metastases; Prediction model; Logistic regression analysis; Hormone receptor -positive; ESTROGEN-RECEPTOR; NOMOGRAM; VALIDATION; PROGNOSIS; SURVIVAL; THERAPY; MARKER; WOMEN; STAGE;
D O I
10.1016/j.radonc.2024.110379
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Breast cancer is a leading cause of cancer-related deaths in females, and the hormone receptorpositive subtype is the most frequent. Breast cancer is a common source of brain metastases; therefore, we aimed to generate a brain metastases prediction model in females with hormone receptor-positive breast cancer. Methods: The primary cohort included 3,682 females with hormone receptor-positive breast cancer treated at a single center from May 2009 to May 2020. Patients were randomly divided into a training dataset (n = 2,455) and a validation dataset (n = 1,227). In the training dataset, simple logistic regression analyses were used to measure associations between variables and the diagnosis of brain metastases and to build multivariable models. The model with better calibration and discrimination capacity was tested in the validation dataset to measure its predictive performance. Results: The variables incorporated in the model included age, tumor size, axillary lymph node status, clinical stage at diagnosis, HER2 expression, Ki-67 proliferation index, and the modified Scarff-Bloom-Richardson grade. The area under the curve was 0.81 (95 % CI 0.75-0.86), p < 0.001 in the validation dataset. The study presents a guide for the clinical use of the model. Conclusion: A brain metastases prediction model in females with hormone receptor-positive breast cancer helps assess the individual risk of brain metastases.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Proteomic prediction in hormone receptor-positive breast cancer.
    Hennessy, B. T.
    Gonzalez-Angulo, A. M.
    Lu, Y.
    Tibes, R.
    Siwak, D.
    Sahin, A.
    Kau, S.
    Hortobagyi, G. N.
    Valero, V.
    Mills, G. B.
    JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (18) : 13S - 13S
  • [2] Disparities in Hormone Receptor-Positive Breast Cancer
    Ogayo, Esther R.
    Mittendorf, Elizabeth A.
    Kantor, Olga
    CURRENT BREAST CANCER REPORTS, 2024, 16 (01) : 106 - 115
  • [3] Androgen Receptor in Hormone Receptor-Positive Breast Cancer
    Khan, Ashfia Fatima
    Karami, Samaneh
    Peidl, Anthony S.
    Waiters, Kacie D.
    Babajide, Mariam Funmi
    Bawa-Khalfe, Tasneem
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (01)
  • [4] Palbociclib for hormone receptor-positive breast cancer
    Harding, Emilia
    LANCET ONCOLOGY, 2015, 16 (07): : E318 - E318
  • [5] Disparities in Hormone Receptor-Positive Breast Cancer
    Esther R. Ogayo
    Elizabeth A. Mittendorf
    Olga Kantor
    Current Breast Cancer Reports, 2024, 16 : 106 - 115
  • [6] Metastasis Dormancy in Estrogen Receptor-Positive Breast Cancer
    Zhang, Xiang H. -F.
    Giuliano, Mario
    Trivedi, Meghana V.
    Schiff, Rachel
    Osborne, C. Kent
    CLINICAL CANCER RESEARCH, 2013, 19 (23) : 6389 - 6397
  • [7] The Natural History of Hormone Receptor-Positive Breast Cancer
    Lim, Elgene
    Metzger-Filho, Otto
    Winer, Eric P.
    ONCOLOGY-NEW YORK, 2012, 26 (08): : 688 - +
  • [8] Postmenopausal Hormone Receptor-Positive Advanced Breast Cancer
    Connolly, Roisin M.
    Stearns, Vered
    ONCOLOGY-NEW YORK, 2013, 27 (06): : 571 - +
  • [9] Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer
    Turner, Nicholas C.
    Oliveira, Mafalda
    Howell, Sacha J.
    Dalenc, Florence
    Cortes, Javier
    Moreno, Henry L. Gomez
    Hu, Xichun
    Jhaveri, Komal
    Krivorotko, Petr
    Loibl, Sibylle
    Morales Murillo, Serafin
    Okera, Meena
    Park, Yeon Hee
    Sohn, Joohyuk
    Toi, Masakazu
    Tokunaga, Eriko
    Yousef, Samih
    Zhukova, Lyudmila
    de Bruin, Elza C.
    Grinsted, Lynda
    Schiavon, Gaia
    Foxley, Andrew
    Rugo, Hope S.
    NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (22): : 2058 - 2070
  • [10] Everolimus in the treatment of hormone receptor-positive breast cancer
    Chavez-MacGregor, Mariana
    Gonzalez-Angulo, Ana Maria
    EXPERT OPINION ON INVESTIGATIONAL DRUGS, 2012, 21 (12) : 1835 - 1843