Groundwater recharge is diffuse in semi-arid African drylands: Evidence from highly instrumented observatories

被引:2
作者
Sorensen, James P. R. [1 ]
Gahi, Narcisse Z. [2 ,3 ]
Guug, Samuel [4 ]
Verhoef, Anne [5 ]
Koita, Mahamadou [6 ]
Sandwidi, Wennegouda J. P. [7 ]
Agyekum, William A. [8 ]
Okrah, Collins [8 ]
Darling, W. George [1 ]
Lawson, Fabrice M. A. [9 ]
MacDonald, Alan M. [10 ]
Vouillamoz, Jean-Michel [11 ]
Macdonald, David M. J. [1 ]
机构
[1] British Geol Survey, Maclean Bldg, Wallingford OX10 8BB, Oxon, England
[2] Int Water & Sanitat Ctr IRC, Ouagadougou, Burkina Faso
[3] Univ Felix Houphouet Boigny, Abidjan, Cote Ivoire
[4] WASCAL Competence Ctr, West African Sci Serv Ctr Climate Change & Adapte, Bolgatanga Vea Watershed, Ghana
[5] Univ Reading, Dept Geog & Environm Sci, Reading, Berks, England
[6] Inst Int Ingn Eau & Environm, Ouagadougou, Burkina Faso
[7] UJKZ, UFDG, Ecole Super Ingn, Ouagadougou, Burkina Faso
[8] CSIR Water Res Inst, POB AH 38, Accra, Ghana
[9] Univ Abomey Calavi, Inst Natl Eau, Cotonou, Benin
[10] British Geol Survey, Lyell Ctr, Res Ave South, Edinburgh, Midlothian, Scotland
[11] Univ Grenoble Alpes, CNRS, IRD, Grenoble INP,IGE, Grenoble, France
基金
英国经济与社会研究理事会;
关键词
Groundwater; Africa; Recharge; Diffuse; Aridity index; Soil moisture; CLIMATE-CHANGE; WATER-TABLE; SOIL; VARIABILITY; BASIN; EVAPORATION; MANAGEMENT; ISOTOPES; STORAGE; SAHEL;
D O I
10.1016/j.jhydrol.2024.131227
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
We use two comprehensively instrumented field observatories to understand groundwater recharge processes in African drylands. The observatories are located on crystalline basement geology in semi-arid parts of Ghana and Burkina Faso, aridity indices 0.43 and 0.29, respectively, and we report 2017-2019 observations. Groundwater recharge was quantified by inverse water table fluctuation models using specific yield estimates derived from magnetic resonance soundings. Evidence for recharge drivers and mechanisms comes from high resolution meteorological observations, soil moisture (logged hourly and weekly along hillslope transects), overland flow plots, river stage, and stable isotopes of O and H in rainfall events and groundwater. Groundwater recharge varied between 87 and 175 mm/y, i.e. 7-15 % of annual rainfall. Rainfall was twice the volume of water lost via actual evapotranspiration across the four peak months (Jun-Sep) of the monsoon. This seasonal water surplus of similar to 350 mm/y is not characterised by the annual scale of the aridity index. Overland flow was rare and soil moisture deficits were overcome at all monitoring locations. Large rainfall events only produced appreciable recharge when the antecedent soil moisture was close to field capacity, yet always produced large responses in river stage. Stable isotopes of O and H in groundwater indicate no evidence of evapotranspiration prior to infiltration and their composition is akin to depleted isotopic rainfall at the monsoon peak. Stable isotopes indicate recharge season timing and not a relationship between intense rainfall and groundwater recharge. We contend that the mechanism for groundwater recharge is predominantly diffuse in these semi-arid African settings.
引用
收藏
页数:14
相关论文
共 71 条
[1]   Runoff and focused groundwater-recharge response to flooding rains in the arid zone of Australia [J].
Acworth, R. Ian ;
Rau, Gabriel C. ;
Cuthbert, Mark O. ;
Leggett, Keith ;
Andersen, Martin S. .
HYDROGEOLOGY JOURNAL, 2021, 29 (02) :737-764
[2]  
Acworth RI, 2016, HYDROGEOL J, V24, P905, DOI 10.1007/s10040-015-1358-7
[3]  
Ampadu B., 2017, Ghana Journal of Science, Technology and Development, V5
[4]   In Situ Observations and Lumped Parameter Model Reconstructions Reveal Intra-Annual to Multidecadal Variability in Groundwater Levels in Sub-Saharan Africa [J].
Ascott, M. J. ;
Macdonald, D. M. J. ;
Black, E. ;
Verhoef, A. ;
Nakohoun, P. ;
Tirogo, J. ;
Sandwidi, W. J. P. ;
Bliefernicht, J. ;
Sorensen, J. P. R. ;
Bossa, A. Y. .
WATER RESOURCES RESEARCH, 2020, 56 (12)
[5]   Changes in the West African forest-savanna mosaic, insights from central Togo [J].
Atsri, Honam Komina ;
Konko, Yawo ;
Cuni-Sanchez, Aida ;
Abotsi, Komla Elikplim ;
Kokou, Kouami .
PLOS ONE, 2018, 13 (10)
[6]   Poverty mitigation through optimized water development and use: Insights from the Volta Basin [J].
Baah-Kumi, Bernard ;
Ward, Frank A. .
JOURNAL OF HYDROLOGY, 2020, 582
[7]   The WASCAL Hydrometeorological Observatory in the Sudan Savanna of Burkina Faso and Ghana [J].
Bliefernicht, J. ;
Berger, S. ;
Salack, S. ;
Guug, S. ;
Hingerl, L. ;
Heinzeller, D. ;
Mauder, M. ;
Steinbrecher, R. ;
Steup, G. ;
Bossa, A. Y. ;
Waongo, M. ;
Quansah, E. ;
Balogun, A. A. ;
Yira, Y. ;
Arnault, J. ;
Wagner, S. ;
Klein, C. ;
Gessner, U. ;
Knauer, K. ;
Straub, A. ;
Schoenrock, R. ;
Kunkel, R. ;
Okogbue, E. C. ;
Rogmann, A. ;
Neidl, F. ;
Jahn, C. ;
Diekkrueger, B. ;
Aduna, A. ;
Barry, B. ;
Kunstmann, H. .
VADOSE ZONE JOURNAL, 2018, 17 (01)
[8]   The Role of Ground Water in Sub-Saharan Africa [J].
Braune, Eberhard ;
Xu, Yongxin .
GROUND WATER, 2010, 48 (02) :229-238
[9]   Flow variability in dryland rivers: Boom, bust and the bits in between [J].
Bunn, SE ;
Thoms, MC ;
Hamilton, SK ;
Capon, SJ .
RIVER RESEARCH AND APPLICATIONS, 2006, 22 (02) :179-186
[10]   Hydrological processes and water resources management in a dryland environment III: Groundwater recharge and recession in a shallow weathered aquifer [J].
Butterworth, J ;
Macdonald, DMJ ;
Bromley, J ;
Simmonds, LP ;
Lovelll, CJ ;
Mugabe, F .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 1999, 3 (03) :345-352