MosaicMVS: Mosaic-Based Omnidirectional Multi-View Stereo for Indoor Scenes

被引:1
|
作者
Shin, Min-Jung [1 ]
Park, Woojune [1 ]
Cho, Minji [1 ]
Kong, Kyeongbo [2 ]
Son, Hoseong [1 ]
Kim, Joonsoo [3 ]
Yun, Kug-Jin [3 ]
Lee, Gwangsoon [3 ]
Kang, Suk-Ju [1 ]
机构
[1] Sogang Univ, Vis & Display Syst Lab Elect Engn, Seoul 04017, South Korea
[2] Pukyong Natl Univ, Media Commun, Busan 48547, South Korea
[3] Elect & Telecommun Res Inst, Immers Media Res Sect, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
Multi-view stereo; depth estimation; omnidirectional imaging; DEPTH;
D O I
10.1109/TMM.2022.3232239
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present MosaicMVS, a novel learning-based depth estimation framework for a mosaic-based omnidirectional multi-view stereo (MVS) camera setup. It uses a regular field of view (FOV) MVS network for an omnidirectional imaging setup with explicit consideration of hypothetical voxel-wise FOV overlaps. The resulting depth predictions are accurate and agree on the omnidirectional multi-view geometry. Unlike existing MVS setups, MosaicMVS camera setup can be easily applied to omnidirectional indoor scenes without having to account for constraints such as intricate epipolar constraints and the distortion of omnidirectional cameras. We validate the effectiveness of our framework on a new challenging indoor dataset in terms of depth estimation, reconstruction, and view synthesis. We also present new evaluation metric to check reconstruction performance using post-processed masks for accurate evaluation without any ground truth depth map or laser-scanned reconstructions. Experimental results show that our framework outperforms the state-of-the-art MVS methods in a large margin in all test scenes.
引用
收藏
页码:8279 / 8290
页数:12
相关论文
共 50 条
  • [1] EOMVS: Event-Based Omnidirectional Multi-View Stereo
    Cho, Hoonhee
    Jeong, Jaeseok
    Yoon, Kuk-Jin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 6709 - 6716
  • [2] Multi-View Guided Multi-View Stereo
    Poggi, Matteo
    Conti, Andrea
    Mattoccia, Stefano
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8391 - 8398
  • [3] Refractive Multi-view Stereo
    Cassidy, Matthew
    Melou, Jean
    Queau, Yvain
    Lauze, Francois
    Durou, Jean-Denis
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 384 - 393
  • [4] A DAISY descriptor based multi-view stereo method for large-scale scenes
    Xue, Bindang
    Cao, Lei
    Han, Donghai
    Bai, Xiangzhi
    Zhou, Fugen
    Jiang, Zhiguo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 35 : 15 - 24
  • [5] Structured Camera Pose Estimation for Mosaic-based Omnidirectional Imaging
    Park, Woojune
    Kim, Jung Hee
    Kang, Suk-Ju
    Kim, Joonsoo
    Yun, Kugjin
    Cheong, Won-Sik
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [6] Depth-Guided Optimization of Neural Radiance Fields for Indoor Multi-View Stereo
    Wei, Yi
    Liu, Shaohui
    Zhou, Jie
    Lu, Jiwen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 10835 - 10849
  • [7] High completeness multi-view stereo for dense reconstruction of large-scale urban scenes
    Liao, Yongjian
    Zhang, Xuexi
    Huang, Nan
    Fu, Chuanyu
    Huang, Zijie
    Cao, Qiku
    Xu, Zexi
    Xiong, Xiaoming
    Cai, Shuting
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 209 : 173 - 196
  • [8] MULTI-VIEW IMAGE FEATURE CORRELATION GUIDED COST AGGREGATION FOR MULTI-VIEW STEREO
    Lai, Yawen
    Qiu, Ke
    Wang, Ronggang
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [9] Multi-View Stereo with Learnable Cost Metric
    Yang, Guidong
    Zhou, Xunkuai
    Gao, Chuanxiang
    Zhao, Benyun
    Zhang, Jihan
    Chen, Yizhou
    Chen, Xi
    Chen, Ben M.
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 3017 - 3024
  • [10] GPU-based multi-view stereo reconstruction
    Wang, Bo Ling
    Jiang, Yan Feng
    Peng, Zhen
    Yu, Sheng Chen
    INFORMATION TECHNOLOGY AND COMPUTER APPLICATION ENGINEERING, 2014, : 451 - 454