A Two-Step Matrix-Splitting Iterative Method for Solving the Generalized Absolute Value Equation

被引:0
作者
Zheng, Lin [1 ,2 ]
Tang, Yangxin [1 ,2 ]
机构
[1] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu 233030, Peoples R China
[2] Anhui Univ Finance & Econ, Inst Quantitat Econ, Bengbu 233030, Peoples R China
关键词
NEWTON METHOD; ALGORITHM;
D O I
10.1155/2024/8396895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a two-step Newton-based matrix-splitting iteration method for solving the generalize absolute value equation. This method can produce a number of two-step Newton-based relaxation iteration algorithms with the right matrix-splitting options. In particular, some specific sufficient conditions are presented, when A is an H+-matrix. Finally, numerical results indicate that the two-step Newton-based relaxation iteration techniques are effective for solving the generalized absolute value equation.
引用
收藏
页数:11
相关论文
共 34 条
[21]   On equivalent reformulations for absolute value equations [J].
Prokopyev, Oleg .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 44 (03) :363-372
[22]   A theorem of the alternatives for the equation Ax+B|x|=b [J].
Rohn, J .
LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (06) :421-426
[23]   An iterative method for solving absolute value equations and sufficient conditions for unique solvability [J].
Rohn, Jiri ;
Hooshyarbakhsh, Vahideh ;
Farhadsefat, Raena .
OPTIMIZATION LETTERS, 2014, 8 (01) :35-44
[24]  
Rohn J, 2009, ELECTRON J LINEAR AL, V18, P589
[25]   On unique solvability of the absolute value equation [J].
Rohn, Jiri .
OPTIMIZATION LETTERS, 2009, 3 (04) :603-606
[26]   The Picard-HSS iteration method for absolute value equations [J].
Salkuyeh, Davod Khojasteh .
OPTIMIZATION LETTERS, 2014, 8 (08) :2191-2202
[27]   On the modulus algorithm for the linear complementarity problem [J].
Schäfer, U .
OPERATIONS RESEARCH LETTERS, 2004, 32 (04) :350-354
[28]   Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations [J].
Wang, An ;
Cao, Yang ;
Chen, Jing-Xian .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (01) :216-230
[29]   A note on unique solvability of the absolute value equation [J].
Wu, Shi-Liang ;
Li, Cui-Xia .
OPTIMIZATION LETTERS, 2020, 14 (07) :1957-1960
[30]   The unique solution of the absolute value equations [J].
Wu, Shi-Liang ;
Li, Cui-Xia .
APPLIED MATHEMATICS LETTERS, 2018, 76 :195-200