A Two-Step Matrix-Splitting Iterative Method for Solving the Generalized Absolute Value Equation

被引:0
作者
Zheng, Lin [1 ,2 ]
Tang, Yangxin [1 ,2 ]
机构
[1] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu 233030, Peoples R China
[2] Anhui Univ Finance & Econ, Inst Quantitat Econ, Bengbu 233030, Peoples R China
关键词
NEWTON METHOD; ALGORITHM;
D O I
10.1155/2024/8396895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a two-step Newton-based matrix-splitting iteration method for solving the generalize absolute value equation. This method can produce a number of two-step Newton-based relaxation iteration algorithms with the right matrix-splitting options. In particular, some specific sufficient conditions are presented, when A is an H+-matrix. Finally, numerical results indicate that the two-step Newton-based relaxation iteration techniques are effective for solving the generalized absolute value equation.
引用
收藏
页数:11
相关论文
共 34 条
[1]   Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi ;
Zhang, Li-Li .
NUMERICAL ALGORITHMS, 2013, 62 (01) :59-77
[2]   Modulus-based matrix splitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (06) :917-933
[3]  
Berman A., 1994, Nonnegative matrices in the mathematical sciences, DOI DOI 10.1137/1.9781611971262
[4]   A relaxed generalized Newton iteration method for generalized absolute value equations [J].
Cao, Yang ;
Shi, Quan ;
Zhu, Sen-Lai .
AIMS MATHEMATICS, 2021, 6 (02) :1258-1275
[5]  
Cottle RW, 2009, CLASS APPL MATH, V60, P1, DOI 10.1137/1.9780898719000
[6]   A modified modulus method for symmetric positive-definite linear complementarity problems [J].
Dong, Jun-Liang ;
Jiang, Mei-Qun .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (02) :129-143
[7]   A new two-step iterative method for solving absolute value equations [J].
Feng, Jingmei ;
Liu, Sanyang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[8]   CONVERGENCE OF RELAXED PARALLEL MULTISPLITTING METHODS [J].
FROMMER, A ;
MAYER, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 119 :141-152
[9]   On Generalized Traub's Method for Absolute Value Equations [J].
Haghani, Farhad Khaksar .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (02) :619-625
[10]  
Khan A, 2023, International Journal of Applied and Computational Mathematics, V9, DOI [10.1007/s40819-023-01593-5, 10.1007/s40819-023-01593-5, DOI 10.1007/S40819-023-01593-5]