Dendrite-Free Li5.5PS4.5Cl1.5-Based All-Solid-State Lithium Battery Enabled by Grain Boundary Electronic Insulation Strategy through In Situ Polymer Encapsulation

被引:2
作者
Du, Limao [1 ]
Wu, Zhan [1 ]
Pang, Bo [1 ]
Yang, Tianqi [1 ]
Zhang, Haiyuan [2 ]
Song, Wenlong [2 ]
Xia, Yang [1 ]
Huang, Hui [1 ]
He, Xinping
Fang, Ruyi [1 ]
Zhang, Wenkui [1 ]
Zhang, Jun [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[2] Tianneng Battery Grp Co Ltd, Changxing 313100, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state lithium battery; argyrodite Li5.5PS4.5Cl1.5; lithium anode; poly(1,3-dioxopentacene); grain boundary electronic insulation; PERFORMANCE; ORIGIN;
D O I
10.1021/acsami.4c04393
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sulfide-based all-solid-state lithium batteries (ASSLBs) have attracted unprecedented attention in the past decade due to their excellent safety performance and high energy storage density. However, the sulfide solid-state electrolytes (SSEs) as the core component of ASSLBs have a certain stiffness, which inevitably leads to the formation of pores and cracks during the production process. In addition, although sulfide SSEs have high ionic conductivity, the electrolytes are unstable to lithium metal and have non-negligible electronic conductivity, which severely limits their practical applications. Herein, a grain boundary electronic insulation strategy through in situ polymer encapsulation is proposed for this purpose. A polymer layer with insulating properties is applied to the surface of the Li5.5PS4.5Cl1.5 (LPSC) electrolyte particles by simple ball milling. In this way, we can not only achieve a dense electrolyte pellet but also improve the stability of the Li metal anode and reduce the electronic conductivity of LPSC. This strategy of electronic isolation of the grain boundaries enables stable deposition/stripping of the modified electrolyte for more than 2000 h at a current density of 0.5 mA cm(-1) in a symmetrical Li/Li cell. With this strategy, a full cell with Li(Ni0.8Co0.1Mn0.1)O-2 (NCM811) as the cathode shows high performance including high specific capacity, improved high-rate capability, and long-term stability. Therefore, this study presents a new strategy to achieve high-performance sulfide SSEs.
引用
收藏
页码:26288 / 26298
页数:11
相关论文
共 42 条
[11]   A Multifunctional Gradient Solid Electrolyte Remarkably Improving Interface Compatibility and Ion Transport in Solid-State Lithium Battery [J].
Li, Lin-xin ;
Li, Rui ;
Huang, Zhen-hao ;
Yang, Hua ;
Liu, Ming-quan ;
Xiang, Jun ;
Hussain, Shahid ;
Shen, Xiang-qian ;
Jing, Mao-xiang .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (27) :30786-30795
[12]   A lithium superionic conductor for millimeter-thick battery electrode [J].
Li, Yuxiang ;
Song, Subin ;
Kim, Hanseul ;
Nomoto, Kuniharu ;
Kim, Hanvin ;
Sun, Xueying ;
Hori, Satoshi ;
Suzuki, Kota ;
Matsui, Naoki ;
Hirayama, Masaaki ;
Mizoguchi, Teruyasu ;
Saito, Takashi ;
Kamiyama, Takashi ;
Kanno, Ryoji .
SCIENCE, 2023, 381 (6653) :50-53
[13]   Electron Redistribution Enables Redox-Resistible Li6PS5Cl towards High-Performance All-Solid-State Lithium Batteries [J].
Liu, Chong ;
Chen, Butian ;
Zhang, Tianran ;
Zhang, Jicheng ;
Wang, Ruoyu ;
Zheng, Jian ;
Mao, Qianjiang ;
Liu, Xiangfeng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (22)
[14]   Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond [J].
Lou, Shuaifeng ;
Zhang, Fang ;
Fu, Chuankai ;
Chen, Ming ;
Ma, Yulin ;
Yin, Geping ;
Wang, Jiajun .
ADVANCED MATERIALS, 2021, 33 (06)
[15]   Constructing Br-Doped Li10SnP2S12-Based All-Solid-State Batteries with Superior Performances [J].
Luo, Qiyue ;
Ming, Liang ;
Zhang, Dong ;
Wei, Chaochao ;
Wu, Zhongkai ;
Jiang, Ziling ;
Liu, Chen ;
Liu, Shiyu ;
Cao, Kecheng ;
Zhang, Long ;
Yu, Chuang ;
Cheng, Shijie .
ENERGY MATERIAL ADVANCES, 2023, 4
[16]   Mechanical regulation of lithium intrusion probability in garnet solid electrolytes [J].
McConohy, Geoff ;
Xu, Xin ;
Cui, Teng ;
Barks, Edward ;
Wang, Sunny ;
Kaeli, Emma ;
Melamed, Celeste ;
Gu, X. Wendy ;
Chueh, William C. .
NATURE ENERGY, 2023, 8 (03) :241-250
[17]   Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders [J].
Nikodimos, Yosef ;
Huang, Chen-Jui ;
Taklu, Bereket Woldegbreal ;
Su, Wei-Nien ;
Hwang, Bing Joe .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) :991-1033
[18]   Dendrite initiation and propagation in lithium metal solid-state batteries [J].
Ning, Ziyang ;
Li, Guanchen ;
Melvin, Dominic L. R. ;
Chen, Yang ;
Bu, Junfu ;
Spencer-Jolly, Dominic ;
Liu, Junliang ;
Hu, Bingkun ;
Gao, Xiangwen ;
Perera, Johann ;
Gong, Chen ;
Pu, Shengda D. ;
Zhang, Shengming ;
Liu, Boyang ;
Hartley, Gareth O. ;
Bodey, Andrew J. ;
Todd, Richard I. ;
Grant, Patrick S. ;
Armstrong, David E. J. ;
Marrow, T. James ;
Monroe, Charles W. ;
Bruce, Peter G. .
NATURE, 2023, 618 (7964) :287-+
[19]   Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells [J].
Ning, Ziyang ;
Jolly, Dominic Spencer ;
Li, Guanchen ;
De Meyere, Robin ;
Pu, Shengda D. ;
Chen, Yang ;
Kasemchainan, Jitti ;
Ihli, Johannes ;
Gong, Chen ;
Liu, Boyang ;
Melvin, Dominic L. R. ;
Bonnin, Anne ;
Magdysyuk, Oxana ;
Adamson, Paul ;
Hartley, Gareth O. ;
Monroe, Charles W. ;
Marrow, T. James ;
Bruce, Peter G. .
NATURE MATERIALS, 2021, 20 (08) :1121-+
[20]   Advanced Characterization Techniques for Sulfide-Based Solid-State Lithium Batteries [J].
Nomura, Yuki ;
Yamamoto, Kazuo .
ADVANCED ENERGY MATERIALS, 2023, 13 (13)