scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data

被引:2
作者
Zhang, Lin [1 ]
Xiang, Haiping [1 ]
Wang, Feng [1 ]
Chen, Zepeng [1 ]
Shen, Mo [1 ]
Ma, Jiani [1 ,2 ]
Liu, Hui [1 ]
Zheng, Hongdang [1 ]
机构
[1] China Univ Min & Technol, Xuzhou 221116, Peoples R China
[2] Univ Melbourne, Melbourne Vet Sch, Dept Vet Biosci, Parkville, Vic 3010, Australia
基金
美国国家科学基金会;
关键词
scRNA-seq clustering; Graph attention autoencoder; Self-supervised learning; HETEROGENEITY;
D O I
10.1016/j.ymeth.2024.06.010
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) enables the investigation of intricate mechanisms governing cell heterogeneity and diversity. Clustering analysis remains a pivotal tool in scRNA-seq for discerning cell types. However, persistent challenges arise from noise, high dimensionality, and dropout in single-cell data. Despite the proliferation of scRNA-seq clustering methods, these often focus on extracting representations from individual cell expression data, neglecting potential intercellular relationships. To overcome this limitation, we introduce scGAAC, a novel clustering method based on an attention-based graph convolutional autoencoder. By leveraging structural information between cells through a graph attention autoencoder, scGAAC uncovers latent relationships while extracting representation information from single-cell gene expression patterns. An attention fusion module amalgamates the learned features of the graph attention autoencoder and the autoencoder through attention weights. Ultimately, a self-supervised learning policy guides model optimization. scGAAC, a hypothesis-free framework, performs better on four real scRNA-seq datasets than most state-of-the-art methods. The scGAAC implementation is publicly available on Github at: https://github.com/labiip/scGAAC.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 43 条
[1]  
Andrews Tallulah S, 2018, F1000Res, V7, P1740, DOI 10.12688/f1000research.16613.1
[2]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[3]   Structural Deep Clustering Network [J].
Bo, Deyu ;
Wang, Xiao ;
Shi, Chuan ;
Zhu, Meiqi ;
Lu, Emiao ;
Cui, Peng .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :1400-1410
[4]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[5]   The single-cell transcriptional landscape of mammalian organogenesis [J].
Cao, Junyue ;
Spielmann, Malte ;
Qiu, Xiaojie ;
Huang, Xingfan ;
Ibrahim, Daniel M. ;
Hill, Andrew J. ;
Zhang, Fan ;
Mundlos, Stefan ;
Christiansen, Lena ;
Steemers, Frank J. ;
Trapnell, Cole ;
Shendure, Jay .
NATURE, 2019, 566 (7745) :496-+
[6]  
Cohen I., 2009, Speech Process, P1
[7]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[8]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method [J].
Gan, Yanglan ;
Li, Ning ;
Zou, Guobing ;
Xin, Yongchang ;
Guan, Jihong .
BMC MEDICAL GENOMICS, 2018, 11
[10]   Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos EDITORIAL COMMENT [J].
Goolam, Mubeen ;
Scialdone, Antonio ;
Graham, Sarah J. L. ;
Macaulay, Iain C. ;
Jedrusik, Agnieszka ;
Hupalowska, Anna ;
Voet, Thierry ;
Marioni, John C. ;
Zernicka-Goetz, Magdalena .
OBSTETRICAL & GYNECOLOGICAL SURVEY, 2016, 71 (07) :411-412