Rational Control of Oxygen Vacancy Density in In2O3 to Boost Methanol Synthesis from CO2 Hydrogenation

被引:25
作者
Wang, Wenhang [1 ,2 ,3 ]
Huo, Kaixuan [2 ]
Wang, Yang [2 ,3 ]
Xie, Jinghao [2 ]
Sun, Xu [3 ]
He, Yingluo [3 ]
Li, Meng [2 ]
Liang, Jie [4 ]
Gao, Xinhua [4 ]
Yang, Guohui [3 ]
Lin, Simin [2 ]
Cao, Fengliang [2 ]
Jiang, Hu [2 ]
Wu, Mingbo [2 ]
Tsubaki, Noritatsu [3 ]
机构
[1] Liaocheng Univ, Sch Chem & Chem Engn, Shandong Prov Key Lab Chem Energy Storage & Novel, Liaocheng 252059, Peoples R China
[2] China Univ Petr East China, Coll New Energy, Coll Chem & Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[3] Univ Toyama, Grad Sch Engn, Dept Appl Chem, Toyama 9308555, Japan
[4] Ningxia Univ, Coll Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
来源
ACS CATALYSIS | 2024年 / 14卷 / 13期
基金
中国国家自然科学基金;
关键词
In2O3; CO2; hydrogenation; methanol; oxygen vacancy; sequential carbonizationand oxidation strategy; TOTAL-ENERGY CALCULATIONS; SELECTIVE HYDROGENATION; CATALYSTS; CONVERSION;
D O I
10.1021/acscatal.4c01929
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxygen vacancies (O-v) in reducible metal oxides are the vital active sites for methanol synthesis via a CO2 hydrogenation technology. However, the relationship between the density of O-v and the methanol synthesis performance is still ambiguous, and it still shows a lack of a versatile strategy to precisely tailor the number of O-v. In this study, with In2O3 as a representatively catalytic component, the density functional theory computation confirms that the O-v property, especially O-v density, is pivotal to enhancing methanol selectivity of CO2 hydrogenation by suppressing the undesirable reverse water-gas shift reaction for CO formation, which is attributed to the unique electronic density of In atoms around O-v. To verify the theoretical results, we report a protocol to optimize the concentration of O-v on In2O3 by sequential carbonization and oxidation (SCO) treatments of In-based metal-organic frameworks, during which the consumption of carbon species and the structural reconstruction of the In2O3 crystal regulated the particle size and O-v concentration of In2O3 by varying the oxidation temperature. The In2O3-5 catalyst carbonized and oxidized at 500 degrees C exhibits good methanol selectivity (72.3%) at a CO2 conversion of 9.9% under 330 degrees C, 3 MPa, and high space velocity of 12,000 L-1 kg(cat)(-1) h(-1). Multiple in situ characterizations clarify that the proposed O-v property regulating the SCO strategy is convenient to boost methanol synthesis by altering the CO2 hydrogenation process to the HCOO* intermediate-dominated pathway. Our work provides the catalyst design strategy and will shed light on the rational design of reducible metal oxide-based catalysts with a controllable O-v density.
引用
收藏
页码:9887 / 9900
页数:14
相关论文
共 59 条
[1]   Design of Dilute Palladium-Indium Alloy Catalysts for the Selective Hydrogenation of CO2 to Methanol [J].
Alamer, Abdulaziz M. ;
Ouyang, Mengyao ;
Alshafei, Faisal H. ;
Nadeem, Muhammad Amtiaz ;
Alsalik, Yahya ;
Miller, Jeffrey T. ;
Flytzani-Stephanopoulos, Maria ;
Sykes, E. Charles H. ;
Manousiouthakis, Vasilios ;
Eagan, Nathaniel M. .
ACS CATALYSIS, 2023, 13 (15) :9987-9996
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   A computational study of CO2 hydrogenation on single atoms of Pt, Pd, Ni and Rh on In2O3(111) [J].
Cannizzaro, Francesco ;
Kurstjens, Sjoerd ;
van den Berg, Tom ;
Hensen, Emiel J. M. ;
Filot, Ivo A. W. .
CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (16) :4701-4715
[4]   Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO2 Hydrogenation over In2O3 Surfaces [J].
Cao, Ang ;
Wang, Zhenbin ;
Li, Hao ;
Norskov, Jens K. .
ACS CATALYSIS, 2021, 11 (03) :1780-1786
[5]   Unraveling Highly Tunable Selectivity in CO2 Hydrogenation over Bimetallic In-Zr Oxide Catalysts [J].
Chen, Tian-yuan ;
Cao, Chenxi ;
Chen, Tian-bao ;
Ding, Xiaoxu ;
Huang, Hai ;
Shen, Liang ;
Cao, Xinyu ;
Zhu, Minghui ;
Xu, Jing ;
Gao, Jian ;
Han, Yi-Fan .
ACS CATALYSIS, 2019, 9 (09) :8785-8797
[6]   Hybrid MOF Template-Directed Construction of Hollow-Structured In2O3@ZrO2 Heterostructure for Enhancing Hydrogenation of CO2 to Methanol [J].
Cui, Wen-Gang ;
Zhang, Qiang ;
Zhou, Lei ;
Wei, Zheng-Chang ;
Yu, Lei ;
Dai, Jing-Jing ;
Zhang, Hongbo ;
Hu, Tong-Liang .
SMALL, 2023, 19 (01)
[7]   Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity [J].
Dang, Shanshan ;
Qin, Bin ;
Yang, Yong ;
Wang, Hui ;
Cai, Jun ;
Han, Yong ;
Li, Shenggang ;
Gao, Peng ;
Sun, Yuhan .
SCIENCE ADVANCES, 2020, 6 (25)
[8]   Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts [J].
Dang, Shanshan ;
Gao, Peng ;
Liu, Ziyu ;
Chen, Xinqing ;
Yang, Chengguang ;
Wang, Hui ;
Zhong, Liangshu ;
Li, Shenggang ;
Sun, Yuhan .
JOURNAL OF CATALYSIS, 2018, 364 :382-393
[9]   Crucial Role of Surface Hydroxyls on the Activity and Stability in Electrochemical CO2 Reduction [J].
Deng, Wanyu ;
Zhang, Lei ;
Li, Lulu ;
Chen, Sai ;
Hu, Congling ;
Zhao, Zhi-Jian ;
Wang, Tuo ;
Gong, Jinlong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (07) :2911-2915
[10]   Rh promoted In2O3 as a highly active catalyst for CO2 hydrogenation to methanol [J].
Dostagir, Nazmul Hasan M. D. ;
Thompson, Coogan ;
Kobayashi, Hirokazu ;
Karim, Ayman M. ;
Fukuoka, Atsushi ;
Shrotri, Abhijit .
CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (24) :8196-8202