Strong convergence for weighted sums of (α, β)-mixing random variables and application to simple linear EV regression model

被引:0
作者
Hu, Wenjing [1 ]
Wang, Wei [1 ]
Wu, Yi [1 ]
机构
[1] Chizhou Univ, Ctr Appl Math, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
(alpha; beta)-mixing random variables; complete convergence; strong law of large numbers; simple linear errors-in-variables model; ASYMPTOTIC PROPERTIES; MOMENT CONVERGENCE; LS ESTIMATORS; CONSISTENCY;
D O I
10.1515/math-2024-0003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the complete convergence and the Kolmogorov strong law of large numbers for weighted sums of (alpha, beta)-mixing random variables are presented. An application to simple linear errors-in-variables model is provided. Simulation studies are also carried out to support the theoretical results.
引用
收藏
页数:15
相关论文
共 50 条