THE LEVEL-SET SUBDIFFERENTIAL ERROR BOUND VIA MOREAU ENVELOPES

被引:1
|
作者
Wang, Yu [1 ]
Li, Shengjie [1 ]
Li, Minghua [2 ]
Li, Xiaobing [3 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing, Peoples R China
[2] Chongqing Univ Arts & Sci, Key Lab Complex Data Anal & Artificial Intelligen, Chongqing, Peoples R China
[3] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2024年 / 8卷 / 03期
基金
中国国家自然科学基金;
关键词
The Kurdyka-ojasiewicz property; Level-set subdifferential error bound; Local Hodlder error bound; Moreau envelope; DESCENT METHODS; CONVERGENCE;
D O I
10.23952/jnva.8.2024.3.05
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The level -set subdifferential error bound (LSEB) is weaker than the Kurdyka-ojasiewicz (KL) property and can replace it to establish linear convergence for various first -order algorithms. In this paper, we mainly study the behaviour of the level -set subdifferential error bound via Moreau envelopes under suitable assumptions. We provide an example that the Moreau envelope does not have the KL property but has the LSEB when the original function does not satisfy the KL property but only the LSEB.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 12 条
  • [1] Convergence of a class of algorithms with the level-set subdifferential error bound
    Wang, Yu
    Li, Shengjie
    Li, Minghua
    Li, Xiaobing
    OPTIMIZATION, 2024,
  • [2] Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method
    Zhu, Daoli
    Deng, Sien
    Li, Minghua
    Zhao, Lei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (03) : 889 - 918
  • [3] Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method
    Daoli Zhu
    Sien Deng
    Minghua Li
    Lei Zhao
    Journal of Optimization Theory and Applications, 2021, 189 : 889 - 918
  • [4] Bregman Proximal Langevin Monte Carlo via Bregman-Moreau Envelopes
    Lau, Tim Tsz-Kit
    Liu, Han
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] On multiple level-set regularization methods for inverse problems
    DeCezaro, A.
    Leitao, A.
    Tai, X-C
    INVERSE PROBLEMS, 2009, 25 (03)
  • [6] A LEVEL-SET METHOD FOR A MEAN CURVATURE FLOW WITH A PRESCRIBED BOUNDARY
    Bian, Xingzhi
    Giga, Yoshikazu
    Mitake, Hiroyoshi
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2025, 30 (1-2) : 1 - 34
  • [7] A global error bound via the SQP method for constrained optimization problem
    Zhao, Wen-Ling
    Song, Dao-Jin
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2007, 3 (04) : 775 - 781
  • [8] Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches
    Lee, Sanghyun
    Wheeler, Mary F.
    Wick, Thomas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 314 : 40 - 60
  • [9] A priori error estimates for finite element approximations of regularized level set flows in higher norms
    Kroener, Axel
    Kroener, Heiko
    APPLIED NUMERICAL MATHEMATICS, 2022, 171 : 307 - 328
  • [10] New analysis of linear convergence of gradient-type methods via unifying error bound conditions
    Zhang, Hui
    MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 371 - 416