Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery

被引:8
作者
Alshehri, Mariam [1 ,2 ]
Ouadou, Anes [1 ]
Scott, Grant J. [1 ]
机构
[1] Univ Missouri, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
[2] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Riyadh 84428, Saudi Arabia
关键词
Climate change; Environmental monitoring; Deforestation; Forestry; Change detection algorithms; Deep learning; Transformers; Biodiversity; Detection algorithms; Spatiotemporal phenomena; Satellite images; South America; Change detection (CD); deep learning (DL); deforestation; transformer; FOREST;
D O I
10.1109/LGRS.2024.3355104
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deforestation poses a critical environmental challenge with far-reaching impacts on climate change, biodiversity, and local communities. As such, detecting and monitoring deforestation are crucial, and recent advancements in deep learning (DL) and remote sensing technologies offer a promising solution to this challenge. In this study, we adapt ChangeFormer, a transformer-based framework, to detect deforestation in the Brazilian Amazon, employing the attention mechanism to analyze spatial and temporal patterns in bitemporal satellite images. To assess the model's effectiveness, we employed a robust approach to create a deforestation detection (DD) dataset, utilizing Sentinel-2 imagery from select conservation areas in the Brazilian Amazon throughout 2020 and 2021. Our dataset comprises 7734 pairs of bitemporal image chips with a resolution of 256 x 256 pixels and 1406 pairs of image chips with a resolution of 512 x 512 pixels. The model achieved an overall accuracy (OA) of 93% with a corresponding F1 score of 90% and an intersection over union (IoU) score of 82%. These results demonstrate the potential of transformer-based networks for accurate and efficient DD.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 14 条
[1]   Evaluation of Deep Learning Techniques for Deforestation Detection in the Brazilian Amazon and Cerrado Biomes From Remote Sensing Imagery [J].
Adarme, Mabel Ortega ;
Feitosa, Raul Queiroz ;
Happ, Patrick Nigri ;
De Almeida, Claudio Aparecido ;
Gomes, Alessandra Rodrigues .
REMOTE SENSING, 2020, 12 (06)
[2]   A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :207-210
[3]   Remote Sensing Image Change Detection With Transformers [J].
Chen, Hao ;
Qi, Zipeng ;
Shi, Zhenwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[4]   Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks [J].
de Bem, Pablo Pozzobon ;
de Carvalho Junior, Osmar Abilio ;
Guimaraes, Renato Fontes ;
Trancoso Gomes, Roberto Arnaldo .
REMOTE SENSING, 2020, 12 (06)
[5]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[6]   A Survey on Vision Transformer [J].
Han, Kai ;
Wang, Yunhe ;
Chen, Hanting ;
Chen, Xinghao ;
Guo, Jianyuan ;
Liu, Zhenhua ;
Tang, Yehui ;
Xiao, An ;
Xu, Chunjing ;
Xu, Yixing ;
Yang, Zhaohui ;
Zhang, Yiman ;
Tao, Dacheng .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) :87-110
[7]   Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks [J].
Khan, Salman H. ;
He, Xuming ;
Porikli, Fatih ;
Bennamoun, Mohammed .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09) :5407-5423
[8]   Deep learning for pixel-level image fusion: Recent advances and future prospects [J].
Liu, Yu ;
Chen, Xun ;
Wang, Zengfu ;
Wang, Z. Jane ;
Ward, Rabab K. ;
Wang, Xuesong .
INFORMATION FUSION, 2018, 42 :158-173
[9]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002
[10]   Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series [J].
Lu, Meng ;
Pebesma, Edzer ;
Sanchez, Alber ;
Verbesselt, Jan .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 117 :227-236