Effects of pseudobulk and Gaussian noise on the application of the dynamical network biomarker theory to single-cell RNA-seq data

被引:0
作者
Yonezawa, Shota [1 ,2 ]
Haruki, Takayuki [2 ,3 ]
Koizumi, Keiichi [2 ]
Watanabe, Tomonobu M. [4 ]
Abe, Kuniya [5 ]
Tada, Yuhki [5 ]
Horita, Yuukou [3 ]
机构
[1] Univ Toyama, Grad Sch Sci & Engn, Toyama, Japan
[2] Univ Toyama, Res Ctr Predis Sci, Toyama, Japan
[3] Univ Toyama, Fac Sustainable Design, Toyama, Japan
[4] RIKEN Ctr Biosyst Dynam Res, Kobe, Japan
[5] RIKEN BioResource Res Ctr, Kobe, Japan
来源
JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING | 2024年 / 11卷 / 01期
关键词
Dynamical network biomarker; Single-cell RNA-seq; Pseudobulk; Gaussian noise;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dynamical network biomarker (DNB) theory detects early warning signals at the transition state (pre -disease state) in complex biological systems. The DNB theory has been applied to microarray data in several diseases. However, this theory has not yet been extensively to limited single -cell RNA sequencing (scRNA-seq) data. The main problem arises from missing values causing a standard deviation of zero, resulting in the calculation of correlation coe ffi cients impossible in the DNB theory. The present study introduces pseudobulk and Gaussian noise to missing values in the scRNA-seq data to avoid division by zero. Without compromising the data characteristics, these two techniques detected previously missed genes for the DNB analysis and, thus, successfully expanded the scope of the DNB theory.
引用
收藏
页码:147 / 157
页数:11
相关论文
共 8 条
  • [1] Dynamical network biomarkers: Theory and applications
    Aihara, Kazuyuki
    Liu, Rui
    Koizumi, Keiichi
    Liu, Xiaoping
    Chen, Luonan
    [J]. GENE, 2022, 808
  • [2] Bottcher Michael, 2020, bioRxiv
  • [3] Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers
    Chen, Luonan
    Liu, Rui
    Liu, Zhi-Ping
    Li, Meiyi
    Aihara, Kazuyuki
    [J]. SCIENTIFIC REPORTS, 2012, 2
  • [4] Application of the Dynamical Network Biomarker Theory to Raman Spectra
    Haruki, Takayuki
    Yonezawa, Shota
    Koizumi, Keiichi
    Yoshida, Yasuhiko
    Watanabe, Tomonobu M.
    Fujita, Hideaki
    Oshima, Yusuke
    Oku, Makito
    Taketani, Akinori
    Yamazaki, Moe
    Ichimura, Taro
    Kadowaki, Makoto
    Kitajima, Isao
    Saito, Shigeru
    [J]. BIOMOLECULES, 2022, 12 (12)
  • [5] Identifying pre-disease signals before metabolic syndrome in mice by dynamical network biomarkers
    Koizumi, Keiichi
    Oku, Makito
    Hayashi, Shusaku
    Inujima, Akiko
    Shibahara, Naotoshi
    Chen, Luonan
    Igarashi, Yoshiko
    Tobe, Kazuyuki
    Saito, Shigeru
    Kadowaki, Makoto
    Aihara, Kazuyuki
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Early-warning signals for critical transitions
    Scheffer, Marten
    Bascompte, Jordi
    Brock, William A.
    Brovkin, Victor
    Carpenter, Stephen R.
    Dakos, Vasilis
    Held, Hermann
    van Nes, Egbert H.
    Rietkerk, Max
    Sugihara, George
    [J]. NATURE, 2009, 461 (7260) : 53 - 59
  • [7] Confronting false discoveries in single-cell differential expression
    Squair, Jordan W.
    Gautier, Matthieu
    Kathe, Claudia
    Anderson, Mark A.
    James, Nicholas D.
    Hutson, Thomas H.
    Hudelle, Remi
    Qaiser, Taha
    Matson, Kaya J. E.
    Barraud, Quentin
    Levine, Ariel J.
    La Manno, Gioele
    Skinnider, Michael A.
    Courtine, Gregoire
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] SGAE: single-cell gene association entropy for revealing critical states of cell transitions during embryonic development
    Zhong, Jiayuan
    Han, Chongyin
    Chen, Pei
    Liu, Rui
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)