Fabrication of N-doped graphitic carbon encapsulated Fe3C/Fe nanoparticles with dual-reaction centers for highly effective Fenton-like degradation of organic pollutants

被引:3
|
作者
Wang, Lan [1 ]
Wang, Yue [1 ]
Zhang, Wei [1 ]
Zhang, Yuanru [2 ]
Wang, Sen [1 ]
Zhu, Zhiqiang [1 ]
Xiang, Biao [1 ]
Wang, Chuanyi [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Peoples R China
[2] Xian Water Purificat & Treatment Co Ltd, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic Fe 3 C/Fe nanoparticles; N -doped graphitic carbon; Dual -reaction centers; Fenton -like degradation; Organic pollutants; CONTAMINANTS; REMOVAL; IRON;
D O I
10.1016/j.surfin.2024.104388
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The highly active and durable design of heterogeneous catalysts holds vital importance in the popularization of Fenton-like process for wastewater remediation. In this study, we successfully fabricated magnetic N-doped graphitic carbon (NC) encapsulated Fe3C/Fe nanoparticles, designated as Fe3C/Fe@NC-2.8, with a two-step pyrolysis method. We employed chitosan as a green precursor of NC, which is used as a heterogeneous Fenton-like catalyst to degrade refractory organic pollutants. Density functional theory (DFT) calculations revealed that the built-in electric field from the shell to core promoted electron transfer from NC to Fe3C/Fe, and thereby improved regeneration of Fe(II) and H2O2 activation. Because of the strong synergistic effects of the dualreaction regions of Fe and Fe3C, as well as the core-shell structure advantages, the optimized Fe3C/Fe@NC rapidly degraded the typical refractory organic pollutants, and showed a much higher activity than the reference Fe2O3 and Fe3O4 samples. The total organic carbon removal efficiency of bisphenol A reached 70 % after reaction for 60 min. In addition, Fe3C/Fe@NC-2.8 possessed trace Fe leaching and satisfactory magnetically separable ability. This work provides mechanistic and practical perspectives for the development of advanced catalysts for recalcitrant pollutant treatment.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Hierarchically porous N-doped carbon nanosheet networks with ultrafine encapsulated Fe3C and Fe-N-x for oxygen reduction reaction in alkaline and acidic media
    Yuan, Yang
    Liu, Youzhen
    Li, Chenhui
    Feng, Shi
    Liu, Qingquan
    Huo, Jia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 920
  • [32] Hierarchically porous N-doped carbon nanosheet networks with ultrafine encapsulated Fe3C and Fe-Nx for oxygen reduction reaction in alkaline and acidic media
    Yuan, Yang
    Liu, Youzhen
    Li, Chenhui
    Feng, Shi
    Liu, Qingquan
    Huo, Jia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 920
  • [33] Hierarchically porous N-doped carbon nanosheet networks with ultrafine encapsulated Fe3C and Fe-Nx for oxygen reduction reaction in alkaline and acidic media
    Yuan, Yang
    Liu, Youzhen
    Li, Chenhui
    Feng, Shi
    Liu, Qingquan
    Huo, Jia
    Journal of Alloys and Compounds, 2022, 920
  • [34] In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants
    Zhu, Ke
    Bin, Qiong
    Shen, Yaqian
    Huang, Jin
    He, Dongdong
    Chen, Wenjin
    CHEMICAL ENGINEERING JOURNAL, 2020, 402
  • [35] In-situ coupling FeN nanocrystals with Fe/Fe3C nanoparticles to N-doped carbon nanosheets for efficient oxygen electrocatalysis
    Pei, Fenglai
    Chen, Meixin
    Kong, Fantao
    Huang, Yifan
    Cui, Xiangzhi
    APPLIED SURFACE SCIENCE, 2022, 587
  • [36] Porous Core-Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction
    Ren, Guangyuan
    Lu, Xianyong
    Li, Yunan
    Zhu, Ying
    Dai, Liming
    Jiang, Lei
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (06) : 4118 - 4125
  • [37] Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine
    Chen, Yao
    Zhang, Xiao-Fang
    Wang, Ai-Jun
    Zhang, Qian-Li
    Huang, Hong
    Feng, Jiu-Ju
    MICROCHIMICA ACTA, 2019, 186 (09)
  • [38] Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine
    Yao Chen
    Xiao-Fang Zhang
    Ai-Jun Wang
    Qian-Li Zhang
    Hong Huang
    Jiu-Ju Feng
    Microchimica Acta, 2019, 186
  • [39] Fe3C/C nanoparticles encapsulated in N-doped graphene aerogel: an advanced oxygen reduction reaction catalyst for fiber-shaped fuel cells
    Yang, Yang
    Wang, Jinxu
    Zhu, Yunlong
    Lan, Linghan
    Zhang, Heng
    Liu, Chunmei
    Tao, Kai
    Li, Jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (33) : 18393 - 18402
  • [40] Selective degradation in Fenton-like reaction catalyzed by Na and Fe Co-doped g-C3N4 catalyst
    Meng, Suhang
    Nan, Zhaodong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 309