Fabrication of N-doped graphitic carbon encapsulated Fe3C/Fe nanoparticles with dual-reaction centers for highly effective Fenton-like degradation of organic pollutants

被引:3
|
作者
Wang, Lan [1 ]
Wang, Yue [1 ]
Zhang, Wei [1 ]
Zhang, Yuanru [2 ]
Wang, Sen [1 ]
Zhu, Zhiqiang [1 ]
Xiang, Biao [1 ]
Wang, Chuanyi [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Peoples R China
[2] Xian Water Purificat & Treatment Co Ltd, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic Fe 3 C/Fe nanoparticles; N -doped graphitic carbon; Dual -reaction centers; Fenton -like degradation; Organic pollutants; CONTAMINANTS; REMOVAL; IRON;
D O I
10.1016/j.surfin.2024.104388
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The highly active and durable design of heterogeneous catalysts holds vital importance in the popularization of Fenton-like process for wastewater remediation. In this study, we successfully fabricated magnetic N-doped graphitic carbon (NC) encapsulated Fe3C/Fe nanoparticles, designated as Fe3C/Fe@NC-2.8, with a two-step pyrolysis method. We employed chitosan as a green precursor of NC, which is used as a heterogeneous Fenton-like catalyst to degrade refractory organic pollutants. Density functional theory (DFT) calculations revealed that the built-in electric field from the shell to core promoted electron transfer from NC to Fe3C/Fe, and thereby improved regeneration of Fe(II) and H2O2 activation. Because of the strong synergistic effects of the dualreaction regions of Fe and Fe3C, as well as the core-shell structure advantages, the optimized Fe3C/Fe@NC rapidly degraded the typical refractory organic pollutants, and showed a much higher activity than the reference Fe2O3 and Fe3O4 samples. The total organic carbon removal efficiency of bisphenol A reached 70 % after reaction for 60 min. In addition, Fe3C/Fe@NC-2.8 possessed trace Fe leaching and satisfactory magnetically separable ability. This work provides mechanistic and practical perspectives for the development of advanced catalysts for recalcitrant pollutant treatment.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fe/Fe3C nanoparticles loaded on Fe/N-doped graphene as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants
    Huang, Xiaoqin
    Niv, Yanli
    Hu, Weihua
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2017, 518 : 145 - 150
  • [2] Fenton-Reaction-Derived Fe/N-Doped Graphene with Encapsulated Fe3C Nanoparticles for Efficient Photo-Fenton Catalysis
    Xiaoqin Huang
    Bomin Feng
    Yanli Niu
    Lei Zhao
    Weihua Hu
    Catalysis Letters, 2018, 148 : 2528 - 2536
  • [3] Fenton-Reaction-Derived Fe/N-Doped Graphene with Encapsulated Fe3C Nanoparticles for Efficient Photo-Fenton Catalysis
    Huang, Xiaoqin
    Feng, Bomin
    Niu, Yanli
    Zhao, Lei
    Hu, Weihua
    CATALYSIS LETTERS, 2018, 148 (08) : 2528 - 2536
  • [4] Fe/Fe3C nanoparticles embedded in N-doped porous carbon as the heterogeneous electro-Fenton catalyst for efficient degradation of bisphenol A
    Zhang, Chao
    Ye, Mengxiang
    Li, Huaimeng
    Liu, Zhenzhen
    Fu, Zhen
    Zhang, Haimin
    Wang, Guozhong
    Zhang, Yunxia
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 316
  • [5] Nitrogen-doped carbon material encapsulated Fe3C with dual-reaction centres to boost peroxymonosulfate activation for efficient organic pollutant removal
    Fan, Xinfei
    Yang, Jia
    Liu, Na
    Xu, Yuanlu
    Yu, Yueling
    Song, Chengwen
    Liu, Yanming
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 51
  • [6] Tuning Active Species in N-Doped Carbon with Fe/Fe3C Nanoparticles for Efficient Oxygen Reduction Reaction
    Luo, Li
    Xu, Yan
    Wang, Dongsheng
    Feng, Wenhui
    Qiu, Xiaoqing
    INORGANIC CHEMISTRY, 2022, 61 (07) : 3166 - 3175
  • [7] Highly Strong Interaction between Fe/Fe3C Nanoparticles and N-Doped Carbon toward Enhanced Oxygen Reduction Reaction Performance
    Li, Jianpeng
    Xiao, Dingshu
    Wang, Peichu
    Chen, Hongyan
    Deng, Minghua
    Zhu, Degang
    Yu, Jie
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2023, 40 (01)
  • [8] Improvement Catalytic Efficiency of the Fenton-Like Reaction via the Interaction among Fe Species Encapsulated in N-Doped Carbon Materials
    Li, Jiaru
    Le, Qiang
    Nan, Zhaodong
    LANGMUIR, 2025, 41 (11) : 7684 - 7696
  • [9] Fe3C Nanorods Encapsulated in N-Doped Carbon Nanotubes as Active Electrocatalysts for Hydrogen Evolution Reaction
    Lulu Zhang
    Yongting Chen
    Pingping Zhao
    Wei Luo
    Shengli Chen
    Minhua Shao
    Electrocatalysis, 2018, 9 : 264 - 270
  • [10] PtFe and Fe3C nanoparticles encapsulated in Fe-N-doped carbon bowl toward the oxygen reduction reaction
    Zhou, Na
    Li, Yinshi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (36) : 13591 - 13602