Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival

被引:11
作者
Haley, Michael J. [1 ,2 ]
Bere, Leoma [1 ,2 ]
Minshull, James [1 ,3 ]
Georgaka, Sokratia [4 ]
Garcia-Martin, Natalia [5 ]
Howell, Gareth [6 ]
Coope, David J. [1 ,3 ,7 ]
Roncaroli, Federico [1 ,3 ,7 ]
King, Andrew [1 ,7 ,8 ]
Wedge, David C. [9 ]
Allan, Stuart M. [1 ,3 ]
Pathmanaban, Omar N. [1 ,3 ,7 ]
Brough, David [1 ,2 ,3 ]
Couper, Kevin N. [1 ,2 ]
机构
[1] Univ Manchester, Northern Care Alliance NHS Fdn Trust, Geoffrey Jefferson Brain Res Ctr, Manchester Acad Hlth Sci Ctr, Manchester, England
[2] Univ Manchester, Lydia Becker Inst Immunol & Inflammat, Manchester, England
[3] Univ Manchester, Div Neurosci, Manchester, England
[4] Univ Manchester, Div Informat Imaging & Data Sci, Manchester, England
[5] Univ Oxford, Dept Stat, Oxford, England
[6] Univ Manchester, Flow Cytometry Core Res Facil, Manchester, England
[7] Manchester Ctr Clin Neurosci, Manchester, England
[8] Univ Manchester, Div Cardiovasc Sci, Manchester, England
[9] Univ Manchester, Manchester Canc Res Ctr, Manchester, England
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 20期
基金
英国医学研究理事会;
关键词
TUMOR; MICROGLIA; PROGRESSION; MICROENVIRONMENT; MACROPHAGES; EXPRESSION; CHALLENGES;
D O I
10.1126/sciadv.adj3301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.
引用
收藏
页数:19
相关论文
共 87 条
  • [1] Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer
    Ali, H. Raza
    Jackson, Hartland W.
    Zanotelli, Vito R. T.
    Danenberg, Esther
    Fischer, Jana R.
    Bardwell, Helen
    Provenzano, Elena
    Rueda, Oscar M.
    Chin, Suet-Feung
    Aparicio, Samuel
    Caldas, Carlos
    Bodenmiller, Bernd
    [J]. NATURE CANCER, 2020, 1 (02) : 163 - +
  • [2] [Anonymous], 2023, A flexible multiplexed image segmentation pipeline based on pixel classification
  • [3] Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization
    Antunes, Ana Rita Pombo
    Scheyltjens, Isabelle
    Lodi, Francesca
    Messiaen, Julie
    Antoranz, Asier
    Duerinck, Johnny
    Kancheva, Daliya
    Martens, Liesbet
    De Vlaminck, Karen
    Van Hove, Hannah
    Hansen, Signe Schmidt Kjolner
    Bosisio, Francesca Maria
    Van der Borght, Koen
    De Vleeschouwer, Steven
    Sciot, Raf
    Bouwens, Luc
    Verfaillie, Michiel
    Vandamme, Niels
    Vandenbroucke, Roosmarijn E.
    De Wever, Olivier
    Saeys, Yvan
    Guilliams, Martin
    Gysemans, Conny
    Neyns, Bart
    De Smet, Frederik
    Lambrechts, Diether
    Van Ginderachter, Jo A.
    Movahedi, Kiavash
    [J]. NATURE NEUROSCIENCE, 2021, 24 (04) : 595 - 610
  • [4] Hypoxia Imaging in Gliomas With 18F-Fluoromisonidazole PET: Toward Clinical Translation
    Bell, Christopher
    Dowson, Nicholas
    Fay, Mike
    Thomas, Paul
    Puttick, Simon
    Gal, Yaniv
    Rose, Stephen
    [J]. SEMINARS IN NUCLEAR MEDICINE, 2015, 45 (02) : 136 - 150
  • [5] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [6] Combining multiple spatial statistics enhances the description of immune cell localisation within tumours
    Bull, Joshua A.
    Macklin, Philip S.
    Quaiser, Tom
    Braun, Franziska
    Waters, Sarah L.
    Pugh, Chris W.
    Byrne, Helen M.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] A distinct microglial subset at the tumor-stroma interface of glioma
    Caponegro, Michael D.
    Oh, Ki
    Madeira, Miguel M.
    Radin, Daniel
    Sterge, Nicholas
    Tayyab, Maryam
    Moffitt, Richard A.
    Tsirka, Stella E.
    [J]. GLIA, 2021, 69 (07) : 1767 - 1781
  • [8] Investigating Glioblastoma Response to Hypoxia
    Chedeville, Agathe L.
    Lourdusamy, Anbarasu
    Monteiro, Ana Rita
    Hill, Richard
    Madureira, Patricia A.
    [J]. BIOMEDICINES, 2020, 8 (09)
  • [9] Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis
    Chen, Yanshuo
    Wang, Yixuan
    Chen, Yuelong
    Cheng, Yuqi
    Wei, Yumeng
    Li, Yunxiang
    Wang, Jiuming
    Wei, Yingying
    Chan, Ting-Fung
    Li, Yu
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma
    Chen, Zhihong
    Feng, Xi
    Herting, Cameron J.
    Garcia, Virginia Alvarez
    Nie, Kai
    Pong, Winnie W.
    Rasmussen, Rikke
    Dwivedi, Bhakti
    Seby, Sandra
    Wolf, Susanne A.
    Gutmann, David H.
    Hambardzumyan, Dolores
    [J]. CANCER RESEARCH, 2017, 77 (09) : 2266 - 2278