Spatiotemporal Distribution Characteristics and Influencing Factors of Freeze-Thaw Erosion in the Qinghai-Tibet Plateau

被引:5
|
作者
Yang, Zhenzhen [1 ]
Ni, Wankui [1 ]
Niu, Fujun [2 ]
Li, Lan [3 ]
Ren, Siyuan [1 ]
机构
[1] Changan Univ, Coll Geol Engn & Geomat, Xian 710054, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Peoples R China
[3] Huanghuai Univ, Coll Architecture Engn, Zhumadian 463000, Peoples R China
关键词
freeze-thaw erosion; Qinghai-Tibet Plateau; AHP; GIS; spatiotemporal characteristics;
D O I
10.3390/rs16091629
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Freeze-thaw (FT) erosion intensity may exhibit a future increasing trend with climate warming, humidification, and permafrost degradation in the Qinghai-Tibet Plateau (QTP). The present study provides a reference for the prevention and control of FT erosion in the QTP, as well as for the protection and restoration of the regional ecological environment. FT erosion is the third major type of soil erosion after water and wind erosion. Although FT erosion is one of the major soil erosion types in cold regions, it has been studied relatively little in the past because of the complexity of several influencing factors and the involvement of shallow surface layers at certain depths. The QTP is an important ecological barrier area in China. However, this area is characterized by harsh climatic and fragile environmental conditions, as well as by frequent FT erosion events, making it necessary to conduct research on FT erosion. In this paper, a total of 11 meteorological, vegetation, topographic, geomorphological, and geological factors were selected and assigned analytic hierarchy process (AHP)-based weights to evaluate the FT erosion intensity in the QTP using a comprehensive evaluation index method. In addition, the single effects of the selected influencing factors on the FT erosion intensity were further evaluated in this study. According to the obtained results, the total FT erosion area covered 1.61 x 106 km2, accounting for 61.33% of the total area of the QTP. The moderate and strong FT erosion intensity classes covered 6.19 x 105 km2, accounting for 38.37% of the total FT erosion area in the QTP. The results revealed substantial variations in the spatial distribution of the FT erosion intensity in the QTP. Indeed, the moderate and strong erosion areas were mainly located in the high mountain areas and the hilly part of the Hoh Xil frozen soil region.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Shear Properties and Mechanism of Freeze-Thaw Interface in Unsaturated Coarse-Grained Soil from Qinghai-Tibet Plateau
    Qu, Yonglong
    Ni, Wankui
    Niu, Fujun
    Mu, Yanhu
    Luo, Jing
    He, Hui
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [42] Seasonal Dynamics of Soil Respiration in an Alpine Meadow: In Situ Monitoring of Freeze-Thaw Cycle Responses on the Qinghai-Tibet Plateau
    Wang, Pei
    Li, Chunqiu
    LAND, 2025, 14 (02)
  • [43] Seasonal freeze-thaw processes impact microbial communities of soil aggregates associated with soil pores on the Qinghai-Tibet Plateau
    Wang, Rui-Zhe
    Hu, Xia
    ECOLOGICAL PROCESSES, 2024, 13 (01)
  • [44] The classification and assessment of freeze-thaw erosion in Tibet
    Jianguo Zhang
    Shuzhen Liu
    Siquan Yang
    Journal of Geographical Sciences, 2007, 17 : 165 - 174
  • [45] The classification and assessment of freeze-thaw erosion in Tibet
    ZHANG Jianguo1
    2. Institute of Mountain Hazards and Environment
    3. National Disaster Reduction Center
    JournalofGeographicalSciences, 2007, (02) : 165 - 174
  • [46] Soil respiration of alpine meadow is controlled by freeze-thaw processes of active layer in the permafrost region of the Qinghai-Tibet Plateau
    Wang, Junfeng
    Wu, Qingbai
    Yuan, Ziqiang
    Kang, Hojeong
    CRYOSPHERE, 2020, 14 (09): : 2835 - 2848
  • [47] The classification and assessment of freeze-thaw erosion in Tibet
    Zhang Jianguo
    Liu Shuzhen
    Yang Siquan
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2007, 17 (02) : 165 - 174
  • [48] Spatiotemporal characteristics and variability in the thermal state of permafrost on the Qinghai-Tibet Plateau
    Hu, Guojie
    Zhao, Lin
    Sun, Zhe
    Zou, Defu
    Xiao, Yao
    Liu, Guangyue
    Du, Erji
    Wang, Chong
    Wang, Yuanwei
    Wu, Xiaodong
    Wang, Lingxiao
    Zhao, Yonghua
    PERMAFROST AND PERIGLACIAL PROCESSES, 2024, 35 (02) : 143 - 156
  • [49] Evaluating the sensitivity and influential factors of freeze-thaw erosion in Tibet, China
    Fan, Jianrong
    Xu, Fubao
    Zhang, Xiyu
    Zhang, Xiaoxue
    Liang, Bo
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [50] Seasonal CO2 fluxes from alpine river influenced by freeze-thaw in the Qinghai Lake basin, northeastern of the Qinghai-Tibet Plateau
    Liu, Menglin
    Li, Xiaoyan
    Cao, Guangchao
    Shi, Fangzhong
    Liu, Fang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 935