On Laguerre-Sobolev matrix orthogonal polynomials

被引:0
作者
Fuentes, Edinson [1 ]
Garza, Luis E. [2 ]
Saiz, Martha L. [3 ]
机构
[1] Univ Los Llanos, Fac Ciencias Bas Ingn, Villavicencio, Colombia
[2] Univ Colima, Fac Ciencias, Colima, Mexico
[3] Univ Pedag & Tecnol Colombia, Fac Estudios Distancia, Tunja, Colombia
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
matrix orthogonal polynomials; Laguerre-Sobolev polynomials; ASYMPTOTICS;
D O I
10.1515/math-2024-0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we study some algebraic and differential properties of matrix orthogonal polynomials with respect to the Laguerre-Sobolev right sesquilinear form defined by < p , q > S & colone; integral 0 infinity p * ( x ) W L A ( x ) q ( x ) d x + M integral 0 infinity ( p ' ( x ) ) * W ( x ) q ' ( x ) d x , {\langle p,q\rangle }_{{\bf{S}}}:= \underset{0}{\overset{\infty }{\int }}{p}<^>{* }\left(x){{\bf{W}}}_{{\bf{L}}}<^>{{\bf{A}}}\left(x)q\left(x){\rm{d}}x+{\bf{M}}\underset{0}{\overset{\infty }{\int }}{(p<^>{\prime} \left(x))}<^>{* }{\bf{W}}\left(x)q<^>{\prime} \left(x){\rm{d}}x, where W L A ( x ) = e - lambda x x A {{\bf{W}}}_{{\bf{L}}}<^>{{\bf{A}}}\left(x)={e}<^>{-\lambda x}{x}<^>{{\bf{A}}} is the Laguerre matrix weight, W {\bf{W}} is some matrix weight, p p and q q are the matrix polynomials, M {\bf{M}} and A {\bf{A}} are the matrices such that M {\bf{M}} is non-singular and A {\bf{A}} satisfies a spectral condition, and lambda \lambda is a complex number with positive real part.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Orthogonal polynomials with respect to the Laguerre measure perturbed by the canonical transformations
    Fejzullahu, Bujar Xh.
    Zejnullahu, Ramadan Xh.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (08) : 569 - 580
  • [42] Matrix orthogonal polynomials whose derivatives are also orthogonal
    Cantero, M. J.
    Moral, L.
    Velazquez, L.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2007, 146 (02) : 174 - 211
  • [43] Δ-Sobolev orthogonal polynomials of Meixner type:: asymptotics and limit relation
    Area, I
    Godoy, E
    Marcellán, F
    Moreno-Balcázar, JJ
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 21 - 36
  • [44] Some asymptotics for Sobolev orthogonal polynomials involving Gegenbauer weights
    Bracciali, Cleonice F.
    Castano-Garcia, Laura
    Moreno-Balcazar, Juan J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (04) : 904 - 915
  • [45] Relative asymptotics for orthogonal matrix polynomials
    Branquinho, A.
    Marcellan, E.
    Mendes, A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1458 - 1481
  • [46] Eigenvalue Problem for Discrete Jacobi-Sobolev Orthogonal Polynomials
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    Wellman, Richard
    [J]. MATHEMATICS, 2020, 8 (02)
  • [47] Bergman Orthogonal Polynomials and the Grunsky Matrix
    Beckermann, Bernhard
    Stylianopoulos, Nikos
    [J]. CONSTRUCTIVE APPROXIMATION, 2018, 47 (02) : 211 - 235
  • [48] Sobolev orthogonal polynomials and spectral methods in boundary value problems
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2024, 200 : 254 - 272
  • [49] Sobolev orthogonal polynomials, Gauss-Borel factorization and perturbations
    Ariznabarreta, Gerardo
    Manas, Manuel
    Tempesta, Piergiulio
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (04)
  • [50] ON ORTHOGONAL POLYNOMIALS WITH RESPECT TO CERTAIN DISCRETE SOBOLEV INNER PRODUCT
    Marcellan, Francisco
    Zejnullahu, Ramadan
    Fejzullahu, Bujar
    Huertas, Edmundo
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2012, 257 (01) : 167 - 188